183_notes:examples:a_meter_stick_on_the_ice

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
183_notes:examples:a_meter_stick_on_the_ice [2014/11/16 21:26] pwirving183_notes:examples:a_meter_stick_on_the_ice [2014/11/20 16:09] pwirving
Line 6: Line 6:
 === Facts === === Facts ===
  
 +Mass of meter stick 300g
  
 +Pull at end of meter stick at right angles to the stick: 6N
  
 +Remember a meter stick is a meter long
  
  
Line 13: Line 16:
 === Lacking === === Lacking ===
  
 +Rate of change of the center-of-mass speed $v_{CM}$?
  
 +Rate of change of the angular speed $\omega$?
  
  
 === Approximations & Assumptions === === Approximations & Assumptions ===
  
 +No friction due to ice
  
  
Line 27: Line 33:
 Surroundings: Your hand (pulling); ice (negligible effect) Surroundings: Your hand (pulling); ice (negligible effect)
  
-{{course_planning:projects:mi3e_11-006.jpg?400}}+{{183_projects:mi3e_11-050.jpg?300}}
  
-$d\vec{P}/dt = d(m\vec{v}_{CM})/dt = \vec{F}_{net}$+$\frac{d\vec{P}}{dt}$ $\vec{F}_{net}$ 
 + 
 +$\frac{d\vec{L}_{rot}}{dt}$ $\vec{\tau}_{net,CM}
 + 
 +$\tau = r_{A}Fsin \theta$
  
  
Line 36: Line 46:
 === Solution === === Solution ===
  
-From the momentum principle:+We can use the momentum principle to find the rate of change of the center of mass speed $v_{cm}$ 
 + 
 +We know that the change in momentum over change in time is equal to $\vec{F}_{net}$ 
 + 
 +$d\vec{P}/dt = d(m\vec{v}_{CM})/dt = \vec{F}_{net}$ 
 + 
 +We are given $\vec{F}_{net}$ and the mass of the meter stick so we can find $v_{CM}$. 
 + 
 +$dv_{CM}/dt = (6N)/(0.3kg) = 20m/s^2$ 
 + 
 +Similarly we know that the Angular Momentum Principle about center of mass states that the change in Rotational Angular Momentum divided by the change in time is equal to the net torque about the center of mass of the meter stick. 
 + 
 +$d\vec{L}_{rot}/dt = \vec{\tau}_{net,CM}$ 
 + 
 +Component into screen (-z direction): 
 + 
 +$Id\omega/dt = (0.5m)(6N)sin90^{\circ} = 3N \cdot m$ 
 + 
 +$d\omega/dt = (3N \cdot m)/[(0.3 kg \cdot m^2)/12] = 120 radians/s^2$
  
-d+In vector terms, $d\vec{\omega}/dt$ points into the page, corresponding to the fact that the angular velocity points into the page and is increasing.
  • 183_notes/examples/a_meter_stick_on_the_ice.txt
  • Last modified: 2014/11/20 16:28
  • by pwirving