183_notes:examples:a_yo-yo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
183_notes:examples:a_yo-yo [2014/10/31 16:22] pwirving183_notes:examples:a_yo-yo [2014/11/06 02:40] pwirving
Line 24: Line 24:
  
 === Assumptions and Approximations === === Assumptions and Approximations ===
 +
 +You are able to maintain constant force when pulling up on yo-yo
 +
 +Assume no slipping of string around the axle. Spindle turns the same amount as string that has unravelled
 +
 +No wobble included
 +
 +String has no mass
 +
  
 === Lacking === === Lacking ===
 +
 +Change in translational kinetic energy of the yo-yo
 +
 +Change in the rotational kinetic energy of the yo-yo
  
 === Representations === === Representations ===
Line 36: Line 49:
  
 Surroundings: Earth and hand Surroundings: Earth and hand
 +
 +{{course_planning:course_notes:mi3e_09-034.jpg?100|}}
  
 b:  b: 
Line 44: Line 59:
  
 Surroundings: Earth and hand Surroundings: Earth and hand
 +
 +{{course_planning:course_notes:mi3e_09-035.jpg?100|}}
 +
 +$\int_i^f \vec{F}_{net} \cdot d\vec{r}_{cm}$
  
 === Solution === === Solution ===
Line 51: Line 70:
 From the Energy Principle (point particle only has $K_{trans}$): From the Energy Principle (point particle only has $K_{trans}$):
  
-$\DeltaK_{trans} = (F - mg)\Deltay_{CM}$+$\Delta K_{trans} = (F - mg)\Delta y_{CM}$ 
 + 
 +$\Delta y_{CM} = -h (from\; digram)$ 
 + 
 +$\Delta K_{trans} = (F - mg)(-h) = (mg - F)h$ 
 + 
 + 
 +b:  
 + 
 +$\Delta E_{sys} = W_{hand} + W_{Earth}$ 
 + 
 +$\Delta K_{trans} + \Delta K_{rot} = Fd + (-mg)(-h)$ 
 + 
 +$\Delta K_{trans} = (mg - F)h$ (From part (a)) 
 + 
 +$(mg - F)h + \Delta K_{rot} = Fd + mgh$ 
 + 
 +$\Delta K_{rot} = F(d + h)$ 
  
  
  
  • 183_notes/examples/a_yo-yo.txt
  • Last modified: 2014/11/06 02:59
  • by pwirving