183_notes:examples:averagevelcompare

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
183_notes:examples:averagevelcompare [2014/07/10 20:11] – [Setup] caballero183_notes:examples:averagevelcompare [2014/07/10 20:22] – [Solution] caballero
Line 6: Line 6:
  
 ==== Setup ==== ==== Setup ====
 +
 +You will compare the two ways of computing the average velocity using the information provided and any information that you can collect or assume.
  
 === Facts ==== === Facts ====
Line 11: Line 13:
   * The distance from East Lansing to Chicago is 3.58$\times10^5m$.   * The distance from East Lansing to Chicago is 3.58$\times10^5m$.
   * For the first hour (3600 s), you drive at 24.6 $\dfrac{m}{s}$.   * For the first hour (3600 s), you drive at 24.6 $\dfrac{m}{s}$.
-  * For the next 2.5 hours (9000 s), you drive at 66.$\dfrac{m}{s}$.+  * For the next 2.5 hours (9000 s), you drive at 29.$\dfrac{m}{s}$.
  
 === Lacking === === Lacking ===
Line 29: Line 31:
  
 ==== Solution ==== ==== Solution ====
-  
  
-==== Solution ====+For this situation, the average velocity can be computed, 
 + 
 +$$v_{avg,x} \dfrac{\Delta x}{\Delta t} \dfrac{3.58\times10^5m}{3600 s + 9000 s} 28.4 \dfrac{m}{s}$$ 
 + 
 +You can compare that to the //arithmetic// average velocity, 
 + 
 +$$v_{avg,x} \approx \dfrac{v_i + v_f}{2} \dfrac{24.6 \dfrac{m}{s} + 29.9 \dfrac{m}{s}}{2} 27.3 \dfrac{m}{s}$$ 
 + 
 +You can see that the //arithmetic// average is (in this case) less than the average velocity. It also under-predicts how far you would have driven, 
 + 
 +$$\Delta x v_{avg,x} \Delta t  27.3 \dfrac{m}{s} (3600s+9000s) 3.43\times10^5 m = 343 km$$ 
 + 
 +which is leaves you at the "outskirts" of Chicago (14.5 km out to be precise).
  
  • 183_notes/examples/averagevelcompare.txt
  • Last modified: 2014/07/10 20:23
  • by caballero