183_notes:examples:earth_s_translational_angular_momentum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
183_notes:examples:earth_s_translational_angular_momentum [2014/11/16 20:27] pwirving183_notes:examples:earth_s_translational_angular_momentum [2014/11/20 00:35] pwirving
Line 6: Line 6:
 === Facts === === Facts ===
  
 +Mass of the Earth: $6$ X $10^{24}$kg
  
- +Distance from the Sun: $1.5$ x $10^{11}$m
  
  
 === Lacking === === Lacking ===
  
 +The magnitude of the Earth's translational (orbital) angular momentum relative to the Sun when the Earth is at location A on the representation and when it is at location B on the representation.
  
  
Line 18: Line 19:
 === Approximations & Assumptions === === Approximations & Assumptions ===
  
 +Assume Earth moves in a perfect circular orbit
  
  
Line 24: Line 25:
  
  
-{{course_planning:projects:mi3e_11-006.jpg?400}}+{{183_projects:mi3e_11-002.jpg?400}}
  
 +Circumference of a circle = $2\pi r$
 +
 +$\vec{p} = m\vec{v}$
 +
 +$v = s/t$
 +
 +$\left|\vec{L}_{trans}\right| = \left|\vec{r}_A\right|\left|\vec{p}\right|\sin \theta$
  
  
Line 31: Line 39:
 === Solution === === Solution ===
  
-The Earth makes one complete orbit of the Sun in 1 year, so its average speed is:+The Earth makes one complete orbit of the Sun in 1 year, so you need to break down 1 year into seconds and know that the distance the Earth travels in that time is $2\pi r$ in order to find its average speed is: 
 + 
 +$v = \frac{2\pi(1.5 \times 10^{11}m)}{(365)(24)(60)(60)s} = 3.0 \times 10^4 m/s$ 
 + 
 +With this average velocity we can find the momentum of Earth at location A as we know the mass of the Earth and now know the velocity of the Earth. 
 + 
 +$ \vec{p} = \langle 0, 6 \times 10^{24}kg \cdot 3.0 \times 10^{4} m/s, 0 \rangle $ 
 + 
 +Computing for momentum we get: 
 + 
 +$ \vec{p} = \langle 0, 1.8 \times 10^{29}, 0 \rangle  kg \cdot m/s$ 
 + 
 +$\mid\vec{p}\mid = 1.8 \times 10^{29} kg \cdot m/s$ 
 + 
 +We know that the magnitude of the Earth's translational angular momentum relative to the sun is given by  $\left|\vec{L}_{trans,Sun}\right| = \left|\vec{r}_A\right|\left|\vec{p}\right|\sin \theta$ 
 + 
 +$\mid\vec{L}_{trans,Sun}\mid = (1.5 \times 10^{11} m)(1.8 \times 10^{29} kg \cdot m/s) sin 90^{\circ}$ 
 + 
 +Compute for $\left|\vec{L}_{trans,Sun}\right|$ by inputting the known values for the variables.
  
-$v = \frac{2\pi(1.5 x 10^{11}m}{(365)(24)(60)(60)s} = 3.0 x 10^m/s$+$\mid\vec{L}_{trans,Sun}\mid 2.7 \times 10^{40} kg \cdot m^2/s$
  
 +It turns out that at location $B, \mid\vec{r}\mid, \mid\vec{p}\mid$, and $\theta$ are the same as they were at location A, so $ \mid\vec{L}_{trans,Sun}\mid$ also has the same value it had at location A.
  • 183_notes/examples/earth_s_translational_angular_momentum.txt
  • Last modified: 2014/11/20 16:30
  • by pwirving