183_notes:examples:finding_the_time_of_flight_of_a_projectile

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
183_notes:examples:finding_the_time_of_flight_of_a_projectile [2014/07/22 06:13] pwirving183_notes:examples:finding_the_time_of_flight_of_a_projectile [2015/09/15 16:46] – [Solution] pwirving
Line 24: Line 24:
 Diagram of forces acting on bus once it leaves the road. Diagram of forces acting on bus once it leaves the road.
  
-{{183_notes:bus_force.jpg}}+{{183_notes:examples:bus_abstract.jpg}}
  
 General equation for position up date formula for constant force systems: General equation for position up date formula for constant force systems:
Line 30: Line 30:
 $$\vec{r}_{f} = \vec{r}_{i} + \vec{v}_{i} \Delta t + \dfrac{1}{2}\dfrac{\vec{F}_{net}}{m} \Delta t^2$$ $$\vec{r}_{f} = \vec{r}_{i} + \vec{v}_{i} \Delta t + \dfrac{1}{2}\dfrac{\vec{F}_{net}}{m} \Delta t^2$$
  
-Equation for determining $\Delta{t}$ in constant force situations.<wrap todo>use vector principle; then motivate why only y matters</wrap>+Equation for determining $\Delta{t}$ in constant force situations.
  
 ==== Solution ==== ==== Solution ====
Line 51: Line 51:
  
 At ground $y_f = 0$; the bus initially leaves the road at $y_i = 40$. At ground $y_f = 0$; the bus initially leaves the road at $y_i = 40$.
- 
-$y_f - y_i = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{F_{net,y}}{m} \Delta{t^2}$ 
  
 $0 - 40 = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{-mg}{m} \Delta{t^2}$ $0 - 40 = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{-mg}{m} \Delta{t^2}$
 +
 +The masses cancel.
  
 $ -40 = v_{iy} \Delta{t} + -\dfrac{1}{2} {g} \Delta{t^2}$ $ -40 = v_{iy} \Delta{t} + -\dfrac{1}{2} {g} \Delta{t^2}$
 +
 +Rearrange the equation.
  
 $ -40 -v_{iy} \Delta{t} = -\dfrac{1}{2} {g} \Delta{t^2}$ $ -40 -v_{iy} \Delta{t} = -\dfrac{1}{2} {g} \Delta{t^2}$
  
--40 -v_{iy} -\dfrac{1}{2} {g} \Delta{t}$+Sub in values for $v_{iy}$ and ${g}$ 
 + 
 +-40 -(7 \Delta{t}) = -4.9 \Delta{t}$ 
 + 
 +Substitute in value for $v_{iy}$ and g
  
 $ 2\dfrac{{40 + v_{iy}}}{g} = \Delta{t}$ $ 2\dfrac{{40 + v_{iy}}}{g} = \Delta{t}$
  
-$ \Delta{t} = 9.59s$+Compute time it takes for the bus to reach the ground.
  
 +$ \Delta{t} = 9.59s$
  
  
  • 183_notes/examples/finding_the_time_of_flight_of_a_projectile.txt
  • Last modified: 2015/09/15 16:51
  • by pwirving