183_notes:examples:rotational_angular_momentum_of_a_bicycle_wheel

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
183_notes:examples:rotational_angular_momentum_of_a_bicycle_wheel [2014/11/16 21:41] pwirving183_notes:examples:rotational_angular_momentum_of_a_bicycle_wheel [2014/11/20 07:17] pwirving
Line 6: Line 6:
 === Facts === === Facts ===
  
 +Mass of bicycle wheel = 0.8kg.
  
 +Bicycle wheel has a radius of 32cm.
  
 +Bicycle wheel is spinning clockwise when viewed from the +y axis.
  
 +Bicycle wheel rotates in the xz plane.
 +
 +Bicycle wheel completes one full revolution in 0.75 seconds.
  
  
 === Lacking === === Lacking ===
  
 +The rotational angular momentum of the wheel
  
  
Line 23: Line 29:
 === Representations === === Representations ===
  
 +Equation for moments of inertia for a hoop: $I=MR^{2}$
  
 +$\omega = \frac{2\pi}{T}$
  
 +$\vec{L}_{rot} = I \vec{\omega}$
  
  
Line 31: Line 39:
 === Solution === === Solution ===
  
-The direction of $\vec{\omega}$ is -y.+We know from the right hand rule that because the wheel is moving clockwise in xz plane that the direction of $\vec{\omega}$ is -y
 + 
 +We are trying to find the rotational angular momentum and to do so we must find $I$ and $\vec{\omega}$ to fill into the following equation: $\vec{L}_{rot} = I \vec{\omega}$ 
 + 
 +We can find $I$ by knowing the mass of the wheel and radius of the wheel.
  
 $I = MR^{2} = (0.8kg)(0.32m)^2 = 0.082 kg \cdot m^2$ $I = MR^{2} = (0.8kg)(0.32m)^2 = 0.082 kg \cdot m^2$
 +
 +We can find $\omega$ because we know that one revolution is equal to $2\pi$ and that this revolution is completed in 0.75seconds.
  
 $\omega = \frac{2\pi}{0.75s} = 8.38 s^{-1}$ $\omega = \frac{2\pi}{0.75s} = 8.38 s^{-1}$
 +
 +We now have values for $I$ and $\omega$ and can find the rotational velocity by filling into $\vec{L}_{rot} = I \vec{\omega}$
  
 $\mid\vec{L}_{rot}\mid$ = $(0.082 kg \cdot m^2)(8.38 s^{-1}) = 0.69 kg \cdot m^2/s$ $\mid\vec{L}_{rot}\mid$ = $(0.082 kg \cdot m^2)(8.38 s^{-1}) = 0.69 kg \cdot m^2/s$
 +
 +Therefore the rotational angular momentum is equal to:
  
 $\vec{L}_{rot} = \langle 0, -0.69, 0 \rangle kg \cdot m^2/s$ $\vec{L}_{rot} = \langle 0, -0.69, 0 \rangle kg \cdot m^2/s$
  • 183_notes/examples/rotational_angular_momentum_of_a_bicycle_wheel.txt
  • Last modified: 2014/11/20 16:32
  • by pwirving