183_notes:examples:sliding_to_a_stop

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revisionBoth sides next revision
183_notes:examples:sliding_to_a_stop [2014/09/16 07:25] – created pwirving183_notes:examples:sliding_to_a_stop [2014/09/22 04:19] pwirving
Line 2: Line 2:
 ===== Example: Sliding to a Stop ===== ===== Example: Sliding to a Stop =====
  
-You take a 3 kg metal block and slide it along the floor, where the coefficient of friction is only 0.4. You release the block with an initial velocity of $\langle 6, 0, 0\rangle m/s+You take a 3 kg metal block and slide it along the floor, where the coefficient of friction is only 0.4. You release the block with an initial velocity of $\langle 6, 0, 0\rangle m/s$. How long will it take for the block to come to a stop? How far does the block move? 
 + 
 +=== Facts ==== 
 + 
 +Block is metal. 
 + 
 +Mass of metal block = 3 kg 
 + 
 +The coefficient of friction between floor and block = 0.4 
 + 
 +Initial velocity of block = $\langle 6, 0, 0\rangle m/s$ 
 + 
 +=== Lacking === 
 + 
 +Time it takes for the block to come to a stop. 
 + 
 +The distance the block moves during this time. 
 + 
 +=== Approximations & Assumptions === 
 + 
 +Assume surface is made of the same material and so coefficient of friction is constant. 
 + 
 +=== Representations === 
 + 
 +{{183_notes:friction_ground.jpg}} 
 + 
 +$\Delta \vec{p} = \vec{F}_{net} \Delta t$ 
 + 
 +=== Solution === 
 + 
 +$ x: \Delta p_x = -F_N\Delta t $ 
 + 
 +$ y: \Delta p_y = (F_N - mg)\Delta t = 0 $ 
 + 
 +Combining these two equations and writing $ p_x = mv_x $, we have 
 + 
 +$ \Delta(mv_x) = -mg\Delta t $ 
 + 
 +$ \Delta(v_x) = - g\Delta t $ 
 + 
 +$ \Delta(t) = \dfrac{0 - v_{xi}}{-g} = \dfrac{v_{xi}}{g} $ 
 + 
 +$ \Delta(t) = \dfrac{6 m/s}{0.4 (9.8 N/kg)} = 1.53s $ 
 + 
 +Since the net force was constant, $v_{x,avg} = (v_{xi} + v_{xf})/2$, so 
 + 
 +$ \Delta x/\Delta t = ((6 + 0)/2) m/s = 3m/s $ 
 + 
 +$ \Delta x = (3 m/s)(1.53 s) = 4.5m $
  • 183_notes/examples/sliding_to_a_stop.txt
  • Last modified: 2018/02/03 23:24
  • by hallstein