183_notes:examples:sliding_to_a_stop

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
183_notes:examples:sliding_to_a_stop [2014/09/16 07:51] pwirving183_notes:examples:sliding_to_a_stop [2014/09/22 04:39] pwirving
Line 5: Line 5:
  
 === Facts ==== === Facts ====
 +
 +Block is metal.
  
 Mass of metal block = 3 kg Mass of metal block = 3 kg
Line 11: Line 13:
  
 Initial velocity of block = $\langle 6, 0, 0\rangle m/s$ Initial velocity of block = $\langle 6, 0, 0\rangle m/s$
 +
 +Final velocity of block = $\langle 0, 0, 0\rangle m/s$
  
 === Lacking === === Lacking ===
 +
 +Time it takes for the block to come to a stop.
 +
 +The distance the block moves during this time.
  
 === Approximations & Assumptions === === Approximations & Assumptions ===
 +
 +Assume surface is made of the same material and so coefficient of friction is constant.
  
 === Representations === === Representations ===
 +
 +{{183_notes:friction_ground.jpg}}
  
 $\Delta \vec{p} = \vec{F}_{net} \Delta t$ $\Delta \vec{p} = \vec{F}_{net} \Delta t$
Line 26: Line 38:
 $ y: \Delta p_y = (F_N - mg)\Delta t = 0 $ $ y: \Delta p_y = (F_N - mg)\Delta t = 0 $
  
-Combining these two equations and writing $ p_x = mv_x $, we have+Write equation of y direction in terms of $F_N$ to sub into x direction equation. 
 + 
 +$ (F_N - mg) \Delta t = 0 $  
 + 
 +Multiply out 
 + 
 +$ F_N \Delta t - mg \Delta t = 0  $ 
 + 
 +Make equal to each other 
 + 
 +$ F_N \Delta t = mg \Delta t  $ 
 + 
 +Cancel $\Delta t$ 
 + 
 +$ F_N = mg   $ 
 + 
 +Combining these two equations and substituting in mg for $F_N$ and writing $ p_x = \Delta(mv_x$, we get the following equation:
  
 $ \Delta(mv_x) = -mg\Delta t $ $ \Delta(mv_x) = -mg\Delta t $
  
-$ \Delta(v_x) = - g\Delta t $+Cancel the masses 
 + 
 +$ \Delta(v_x) = - g\Delta t $   
 + 
 +Rearrange to solve for $\Delta t$ and sub in 0 - $v_{xi}$ for $ \Delta(v_x)$
  
 $ \Delta(t) = \dfrac{0 - v_{xi}}{-g} = \dfrac{v_{xi}}{g} $ $ \Delta(t) = \dfrac{0 - v_{xi}}{-g} = \dfrac{v_{xi}}{g} $
 +
 +Fill in values for variables and solve for $\Delta t$
  
 $ \Delta(t) = \dfrac{6 m/s}{0.4 (9.8 N/kg)} = 1.53s $ $ \Delta(t) = \dfrac{6 m/s}{0.4 (9.8 N/kg)} = 1.53s $
  
-Since the net force was constant$v_{x,avg} = (v_{xi} + v_{xf})/2$, so+Since the net force was constant we can say the average velocity can be described as: $v_{x,avg} = (v_{xi} + v_{xf})/2$, so
  
 $ \Delta x/\Delta t = ((6 + 0)/2) m/s = 3m/s $ $ \Delta x/\Delta t = ((6 + 0)/2) m/s = 3m/s $
 +
 +Sub in for $\Delta t$ and solve for $\Delta x$
  
 $ \Delta x = (3 m/s)(1.53 s) = 4.5m $ $ \Delta x = (3 m/s)(1.53 s) = 4.5m $
  • 183_notes/examples/sliding_to_a_stop.txt
  • Last modified: 2018/02/03 23:24
  • by hallstein