183_notes:examples:sliding_to_a_stop

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
183_notes:examples:sliding_to_a_stop [2014/09/22 04:24] pwirving183_notes:examples:sliding_to_a_stop [2014/09/22 04:39] pwirving
Line 37: Line 37:
  
 $ y: \Delta p_y = (F_N - mg)\Delta t = 0 $ $ y: \Delta p_y = (F_N - mg)\Delta t = 0 $
 +
 +Write equation of y direction in terms of $F_N$ to sub into x direction equation.
  
 $ (F_N - mg) \Delta t = 0 $  $ (F_N - mg) \Delta t = 0 $ 
  
-$ F_N \Delta t - mg \Delta t = 0  \,\,\,\,\,\,\,Multiply\, out.$+Multiply out
  
-$ F_N \Delta t mg \Delta t  \,\,\,\,\,\,\,\,\,Make\, equal\, to\, each\, other.$+$ F_N \Delta t mg \Delta t = 0  $
  
-$ F_N = mg  \,\,\,\,\,\,\,\,\,\,\,\,Cancel\, \Delta t. $+Make equal to each other
  
-Combining these two equations and substituting in mg for F_N and writing $ p_x = mv_x $, we get the following equation:+$ F_N \Delta t = mg \Delta t  $ 
 + 
 +Cancel $\Delta t$ 
 + 
 +$ F_N = mg   $ 
 + 
 +Combining these two equations and substituting in mg for $F_Nand writing $ p_x = \Delta(mv_x$, we get the following equation:
  
 $ \Delta(mv_x) = -mg\Delta t $ $ \Delta(mv_x) = -mg\Delta t $
  
-$ \Delta(v_x) = - g\Delta t $  Cancel the masses+Cancel the masses 
 + 
 +$ \Delta(v_x) = - g\Delta t $   
 + 
 +Rearrange to solve for $\Delta t$ and sub in 0 - $v_{xi}$ for $ \Delta(v_x)$
  
 $ \Delta(t) = \dfrac{0 - v_{xi}}{-g} = \dfrac{v_{xi}}{g} $ $ \Delta(t) = \dfrac{0 - v_{xi}}{-g} = \dfrac{v_{xi}}{g} $
 +
 +Fill in values for variables and solve for $\Delta t$
  
 $ \Delta(t) = \dfrac{6 m/s}{0.4 (9.8 N/kg)} = 1.53s $ $ \Delta(t) = \dfrac{6 m/s}{0.4 (9.8 N/kg)} = 1.53s $
  
-Since the net force was constant$v_{x,avg} = (v_{xi} + v_{xf})/2$, so+Since the net force was constant we can say the average velocity can be described as: $v_{x,avg} = (v_{xi} + v_{xf})/2$, so
  
 $ \Delta x/\Delta t = ((6 + 0)/2) m/s = 3m/s $ $ \Delta x/\Delta t = ((6 + 0)/2) m/s = 3m/s $
 +
 +Sub in for $\Delta t$ and solve for $\Delta x$
  
 $ \Delta x = (3 m/s)(1.53 s) = 4.5m $ $ \Delta x = (3 m/s)(1.53 s) = 4.5m $
  • 183_notes/examples/sliding_to_a_stop.txt
  • Last modified: 2018/02/03 23:24
  • by hallstein