183_notes:model_of_a_wire

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
183_notes:model_of_a_wire [2015/09/20 12:17] – [Modeling the solid wire] caballero183_notes:model_of_a_wire [2018/05/29 20:54] hallstein
Line 1: Line 1:
 +Section 4.4 and 4.5 in Matter and Interactions (4th edition) 
 +
 ===== Modeling a Solid Wire with Springs ====== ===== Modeling a Solid Wire with Springs ======
  
Line 15: Line 17:
 $$\rho = 21.45 \dfrac{g}{cm^3} \left(\dfrac{1kg}{10^3g}\right)\left(\dfrac{100 cm}{1m}\right)^3 = 21.45 \times 10^3 kg/m^3$$ $$\rho = 21.45 \dfrac{g}{cm^3} \left(\dfrac{1kg}{10^3g}\right)\left(\dfrac{100 cm}{1m}\right)^3 = 21.45 \times 10^3 kg/m^3$$
  
-Consider a cubic meter of Pt, which is a cube that is 1m long on each side((This amount of Pt would costs nearly $1,000,000.)). You can use this to find the number of Pt atoms in a cubic meter:+Consider a cubic meter of Pt, which is a cube that is 1m long on each side((This amount of Pt would costs nearly $700,000,000.)). You can use this to find the number of Pt atoms in a cubic meter:
  
 $$21.45\times10^3 \dfrac{kg}{m^3} \left(\dfrac{1 mol}{0.195 kg}\right) \left(\dfrac{6.02\times10^{23} atoms}{1 mol}\right) = 6.62\times10^{28}\:\mathrm{atoms}$$ $$21.45\times10^3 \dfrac{kg}{m^3} \left(\dfrac{1 mol}{0.195 kg}\right) \left(\dfrac{6.02\times10^{23} atoms}{1 mol}\right) = 6.62\times10^{28}\:\mathrm{atoms}$$
  • 183_notes/model_of_a_wire.txt
  • Last modified: 2021/03/13 19:40
  • by stumptyl