184_notes:examples:week12_force_between_wires

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
184_notes:examples:week12_force_between_wires [2017/11/07 16:20] – [Solution] tallpaul184_notes:examples:week12_force_between_wires [2017/11/07 16:54] tallpaul
Line 7: Line 7:
  
 ===Lacking=== ===Lacking===
-  * $\frac{\vec{F}}{L}$+  * $\vec{F}_{1 \rightarrow 2 \text{, L}}$
  
 ===Approximations & Assumptions=== ===Approximations & Assumptions===
Line 21: Line 21:
   * We represent the situation with diagram below.   * We represent the situation with diagram below.
  
-{{ 184_notes:12_representation.png?500 |Two Wires}}+{{ 184_notes:12_two_wires_representation.png?400 |Two Wires}}
  
 ====Solution==== ====Solution====
 We know that the magnetic field at the location of Wire 2 from Wire 1 is given by the magnetic field of a long wire: We know that the magnetic field at the location of Wire 2 from Wire 1 is given by the magnetic field of a long wire:
-$$\vec{B}=\frac{\mu_0 I_1}{2 \pi r} \hat{z}$$+$$\vec{B}_1=\frac{\mu_0 I_1}{2 \pi r} \hat{z}$$
  
 We can reason that the direction of the field is $+\hat{z}$ because of the [[184_notes:rhr|Right Hand Rule]]. We also don't care about the magnetic field from Wire 2 at the location of Wire 2, since Wire 2 cannot exert a force on itself. Now, it remains to calculate the magnetic force. We can reason that the direction of the field is $+\hat{z}$ because of the [[184_notes:rhr|Right Hand Rule]]. We also don't care about the magnetic field from Wire 2 at the location of Wire 2, since Wire 2 cannot exert a force on itself. Now, it remains to calculate the magnetic force.
Line 33: Line 33:
  
 This gives This gives
-$$\text{d}\vec{l} \times \vec{B} = \frac{\mu_0 I_1}{2 \pi r}\text{d}y \hat{x}$$+$$\text{d}\vec{l} \times \vec{B}_1 = \frac{\mu_0 I_1}{2 \pi r}\text{d}y \hat{x}$$
  
 Lastly, we need to choose the limits on our integral. We can select our origin conveniently so that the segment of interest extends from $y=0$ to $y=L$. Now, we write: Lastly, we need to choose the limits on our integral. We can select our origin conveniently so that the segment of interest extends from $y=0$ to $y=L$. Now, we write:
  
-$$\frac{\vec{F}_{1 \rightarrow 2}}{L} = \int_0^L I_2 \text{d}\vec{l} \times \vec{B} = \int_0^L \frac{\mu_0 I_1 I_2}{2 \pi r}\text{d}y \hat{x} = \frac{\mu_0 I_1 I_2 L}{2 \pi r} \hat{x}$$+$$\vec{F}_{1 \rightarrow 2 \text{L}} = \int_0^L I_2 \text{d}\vec{l} \times \vec{B}_1 = \int_0^L \frac{\mu_0 I_1 I_2}{2 \pi r}\text{d}y \hat{x} = \frac{\mu_0 I_1 I_2 L}{2 \pi r} \hat{x}$$
  
 +{{ 184_notes:12_force_per_length.png?500 |Force Per Length}}
  
------------- +Notice that this force is repellent. The equal and opposite force of Wire 2 upon Wire 1 would also be repellentHad the two current been going in the same directionone can imagine that the two wires would attract each other.
- +
- +
- +
-For now, we write $$\text{d}\vec{l} = \langle \text{d}x, -\text{d}y, 0 \rangle$$ +
- +
-We write the $y$-component with a negative sign so that $\text{d}y$ can be positive. For the separation vector, we write +
-$$\vec{r} = \vec{r}_{obs} - \vec{r}_{source} = \langle 0,0,0 \rangle - \langle x, y, 0 \rangle = \langle -x, -y, 0 \rangle$$ +
- +
-Notice that we can rewrite $y$ as $y=-x-L$. This equation comes from the equation for a straight line, $y=mx+b$, where the slope of the line (or wire in this case) is $m=-1$ and the y-intercept of the wire is at $b=-L$. An alternate solution to this example could also be to rotate the coordinate system so that the x or y axis lines up with wire. If finding $y$ is troublesome, it may be helpful to rotate your coordinate axes. +
- +
-{{ 184_notes:9_dl_breakdown.png?600 |Breakdown of dl-vector}} +
- +
-We can use geometric arguments to say that $\text{d}y=\text{d}x$See the diagram above for an insight into this geometric argument. We can now plug in to express $\text{d}\vec{l}$ and $\vec{r}$ in terms of $x$ and $\text{d}x$: +
-$$\text{d}\vec{l} = \langle \text{d}x-\text{d}x, 0 \rangle$$ +
-$$\vec{r} = \langle -x, L+x, 0 \rangle$$ +
-Now, we can take the cross product and find the magnitude of the $\vec{r}$: +
-$$\text{d}\vec{l} \times \vec{r} = \langle 0, 0, \text{d}x(L+x) - (-\text{d}x)(-x) \rangle = \langle 0, 0, L\text{d}x \rangle = L\text{d}x \hat{z}$$ +
-$$r^3 = (x^2 + (L+x)^2)^{3/2}$$ +
-The last thing we need is the bounds on our integral. Our variable of integration is $x$, since we chose to express everything in terms of $x$ and $\text{d}x$. (Earlier we could have equally have chosen to write everything in terms of y and dy though.) We know that our segment begins at $x=-L$, and ends at $x=0$, so these will be the limits on our integralBelow, we write the integral all set up, and then we evaluate using some assistance some [[https://www.wolframalpha.com/input/?i=integral+from+-L+to+0+of+L%2F(x%5E2%2B(L%2Bx)%5E2)%5E(3%2F2)+dx|Wolfram Alpha]]. +
-\begin{align*} +
-\vec{B} &= \int \frac{\mu_0}{4 \pi}\frac{I \cdot d\vec{l}\times \vec{r}}{r^3} \\ +
-        &= \int_{-L}^0 \frac{\mu_0}{4 \pi}\frac{IL\text{d}x}{(x^2 + (L+x)^2)^{3/2}}\hat{z} \\ +
-        &= \frac{\mu_0}{2 \pi}\frac{I}{L}\hat{z} +
-\end{align*}+
  • 184_notes/examples/week12_force_between_wires.txt
  • Last modified: 2021/07/13 12:16
  • by schram45