184_notes:examples:week7_wire_dimensions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
184_notes:examples:week7_wire_dimensions [2017/10/04 13:14] – [Example: Changing the Dimensions of a Wire] tallpaul184_notes:examples:week7_wire_dimensions [2017/10/04 15:37] – [Solution] tallpaul
Line 24: Line 24:
  
 ====Solution==== ====Solution====
-Let's start with node $A$Incoming current is $I_1$and outgoing current is $I_2$. How do we decide if $I_{A\rightarrow B}$ is incoming or outgoing? We need to bring it back to the Node Rule: $I_{in}=I_{out}$Since $I_1=8 \text{ A}$ and $I_2=3 \text{ A}$, we need $I_{A\rightarrow B}$ to be outgoing to balance. To satisfy the Node Rule, we set +Let's start with segment 1The electric field is constant since the wire is uniform with respect to the rest of the segmentso we get $$E_1 = \frac{\Delta V_1}{L_1} = 0.\text{ V/m}$$ 
-$$I_{A\rightarrow B} = I_{out}-I_2 = I_{in}-I_2 = I_1-I_2 = 5 \text{ A}$$+The power dissipated through the segment is just $$P_1=I_1 \Delta V_1 = 5 \text{ W}$$
  
-We do a similar analysis for node $B$. Incoming current is $I_{A\rightarrow B}$, and outgoing current is $I_3$. Since $I_{A\rightarrow B}=\textA}$ and $I_3=4 \text{ A}$, we need $I_{B\rightarrow D}$ to be outgoing to balance. To satisfy the Node Rule, we set +Now, for segment 2. We can use [[184_notes:r_energy#Conservation_of_Charge_in_Circuits|what we know]] about charge in steady state circuits to determine the electric field (notice we divide diameter by 2 in order to use the equation for the area of the circular cross-section): $$E_2=\frac{A_1}{A_2}E_1 = \frac{\pi (d_1/2)^2}{\pi (d_2/2)^2}E_1=9E_1=4.5\text{ V/m}$$ 
-$$I_{B\rightarrow D} I_{out}-I_3 I_{in}-I_3 I_{A\rightarrow B}-I_3 \text{ A}$$+A simple application of the [[184_notes:current#Current_in_Different_Parts_of_the_Wire|Current Node Rule]] tells us that $I_2=I_1$. The voltage is easily found from the constant electric field: $\Delta V_2=E_2 L_2 9 \textV}$ The power dissipated through the segment is then $$P_2=I_2 \Delta V_2 45 \text{ W}$$
  
-For node $C$incoming current is $I_2and $I_3$. There is no outgoing current defined yet! $I_{C\rightarrow D}$ must be outgoing to balance. To satisfy the Node Rule, we set +For segment 3we can reason based on the thicknesses of the segments that $E_3=E_1$. This yields $$E_3 = 0.\text{ V/m}$$ 
-$$I_{C\rightarrow D} I_{out} I_{in} = I_2+I_3 = \text{ A}$$+We can use the same reasoning as before to say that $I_3=I_2=I_1$. We can also find voltage pretty easily: $\Delta V_3=E_3 L_3 2 \textV}$. The power is calculated as before. $$P_3=I_3 \Delta V_3 10 \text{ W}$$
  
-Lastly, we look at node $D$. Incoming current is $I_{B\rightarrow D}and $I_{C\rightarrow D}$. Since there is no outgoing current defined yet, $I_{D\rightarrow battery}$ must be outgoing to balanceTo satisfy the Node Rule, we set +Notice that we could have also used [[184_notes:r_energy#Energy_around_the_Circuit|Kirchoff's Loop Rule]] to find the voltage of different segments. For nowit will serve as a nice check on our math. If we travel along the direction of conventional, voltage decreases, so $\Delta V_1$$\Delta V_2$$\Delta V_3<0$, whereas we have $\Delta V_{battery}>0$. These four potential differences form a loop, so by Kirchoff's Loop Rule they should add to 0: 
-$$I_{D\rightarrow battery} = I_{out= I_{in= I_{B\rightarrow D}+I_{B\rightarrow D= 8 \text{ A}$$ +$$\Delta V_{battery}+\Delta V_1+\Delta V_2+\Delta V_3 12 \textV- 1 \textV- 9 \textV- 2 \text{ V= 0$$ 
- +Sometimes we will not have as much information as we did here, and using the Loop Rule will be requiredFor nowit serves as a nice check.
-Notice that $I_{D\rightarrow battery}=I_1$. This will always be the case for currents going in and out of the battery (approximating a few things that are usually safe to approximate, such as a steady current)In factwe could have treated the battery as another node in this example. Notice also that if you incorrectly reason about the direction of current (incoming or outgoing), the calculation will give a negative number for the currentThe Node Rule is self-correcting. A final diagram with directions is shown below. +
- +
-{{ 184_notes:6_nodes_with_arrows.png?300 |Circuit with Nodes}}+
  • 184_notes/examples/week7_wire_dimensions.txt
  • Last modified: 2021/06/14 23:40
  • by schram45