184_notes:examples:week8_cap_series

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
184_notes:examples:week8_cap_series [2017/10/11 12:56] – [Example: Resistors in Series] tallpaul184_notes:examples:week8_cap_series [2018/06/26 14:39] – [Solution] curdemma
Line 1: Line 1:
-=====ExampleResistors in Series===== +[[184_notes:c_series|Return to capacitors in series notes]]
-Suppose you have the following circuit. Capacitors are labeled 1 and 2 for convenience of reference. You know that the circuit contains a 12-Volt battery, $Q_1=4.5 \mu\text{C}$, and $C_2=0.5 \mu\text{F}$. What is the capacitance of Capacitor 1? What happens to the charge on the capacitors if we insert a dielectric material with dielectric constant $\epsilon = 3\epsilon_0$ into Capacitor 1?+
  
-{{ 184_notes:8_cap_series.png?300 |Circuit with Capacitors in Series}}+=====Example: Capacitors in Series===== 
 +Suppose you have the following circuit. Capacitors are labeled 1 and 2 for convenience of reference. You know that the circuit contains a 12-Volt battery, $Q_1=4.5 \mu\text{C}$, and $C_2=0.5 \mu\text{F}$. What is the capacitance of Capacitor 1? What happens to the charge on //both// of the capacitors if we insert a dielectric material with dielectric constant $k = 3$ into Capacitor 1? 
 + 
 +[{{ 184_notes:8_cap_series.png?300 |Circuit with Capacitors in Series}}]
  
 ===Facts=== ===Facts===
Line 8: Line 10:
   * $Q_1 = 4.5 \mu\text{C}$   * $Q_1 = 4.5 \mu\text{C}$
   * $C_2 = 0.5 \mu\text{F}$   * $C_2 = 0.5 \mu\text{F}$
-  * $\epsilon = 3\epsilon_0$+  * $= 3$
  
 ===Lacking=== ===Lacking===
Line 18: Line 20:
   * We are measuring things like potential differences and charges when the circuit is in a steady state.   * We are measuring things like potential differences and charges when the circuit is in a steady state.
   * Approximating the battery as a mechanical battery.   * Approximating the battery as a mechanical battery.
 +  * Capacitors are parallel plate capacitors.
  
 ===Representations=== ===Representations===
Line 24: Line 27:
 $$\frac{1}{C_{\text{equiv}}}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}+\ldots$$ $$\frac{1}{C_{\text{equiv}}}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}+\ldots$$
   * We represent the situation with diagram given above.   * We represent the situation with diagram given above.
 +
 ====Solution==== ====Solution====
-Shortly, we will constrain our calculations to just Resistors and 2We don't have any information on Resistor 2, so our approach will be to find the equivalent resistance of 1 and 2and then focus on just Resistor 2 using equation (3). The first steps in our approach will be to find the current and potential difference across these two resistors//Note, this is not the only approach that would work! Another way would be to find individual potential difference across each resistorand then focusing on Resistor 2 from thereSee if you can think of yet another method...//+===Part === 
 +Let's find $C_1$In order to use the equation for equivalent capacitance of capacitors in seriesas we have here, we first need the equivalent capacitance of the entire circuitRemember that the [[184_notes:c_series#Node_Rule_and_Charge_in_Series|charge on the capacitors]] in series should be the sameso $Q_{\text{equiv}}=Q_1=Q_2$Now, we can write: 
 +$$C_{\text{equiv}}=\frac{Q_{\text{equiv}}}{\Delta V_{\text{bat}}}=0.375 \mu\text{F}$$ 
 + 
 +Now we can solve for $C_1$ using $$\frac{1}{C_{\text{equiv}}}=\frac{1}{C_1}+\frac{1}{C_2}$$ 
 +This gives us $C_1 = 0.5 \mu\text{F}$ 
 + 
 +===Part 2=== 
 +[{{  184_notes:8_cap_series_dielectric.png?300|Circuit with Capacitors in Series, one capacitor has a dielectric}}]
  
-We can use the Loop Rule -- equation (4) -- to find the potential difference across these two resistorsThe potential difference across the battery has opposite sign as the differences across the resistors, if we consider the circuit as loop of individual differencesWe write: +Now we need to consider what happens when we insert a dielectric. It might look something like the circuit to the rightA description of what a dielectric does in capacitor is [[184_notes:cap_charging#Dielectrics|here]]Its [[184_notes:cap_in_cir#Finding_Capacitance|effect on capacitance]] is: $$C =\frac{k\epsilon_0 A}{d}$$
-$$\Delta V_{bat= \Delta V_1 + \Delta V_2 + \Delta V_3$$ +
-Since we know $\Delta V_{bat}$ and $\Delta V_3$, we can plug in and solve: $\Delta V_1 + \Delta V_2 = 6 \text{ V}$.+
  
-We can find current through the circuit using equations (1) and (2)We can write the power dissipated through Resistor 1 as $$P_1={I_1}^2R_1$$ +So when we insert the dielectric, we have a new capacitance for Capacitor 1: $C_{\text{1, new}}=kC_1=4.5 \mu\text{F}$. To find the new value that the capacitors are charged to, we return to the equivalent capacitance of the circuit: 
-Since we know $P_1$ and $R_1$, we can plug in and solve for $I_1=\sqrt{P_1/R_1}=0.\text{ A}$. Recall that the [[184_notes:current#Current_in_Different_Parts_of_the_Wire|Node Rule]] tells us that the current is the same everywhere in the circuitsince the entire circuit is arranged in a series. so $I=I_1=0.\text{ A}$.+$$\frac{1}{C_{\text{equiv, new}}}=\frac{1}{C_{\text{1, new}}}+\frac{1}{C_2}$$ 
 +This yields $C_{\text{equiv, new}}=0.45 \mu\text{F}$. Nowwe can find the new charge: 
 +$$Q_{\text{new}} C_{\text{equiv, new}}\Delta V_{\text{bat}} 5.4 \mu\text{C}$$
  
-We now have enough information to find the equivalent resistance of the two resistorsusing Ohm's Law -- equation (1). We write: +**This is the charge on __both__ capacitors** since the capacitors are in series. So even if we insert a dielectric in only one of the capacitors, the charge on both will increase.
-$$R_{\text{1 and 2, equivalent}}=\frac{\Delta V_1 + \Delta V_2}{I}=60 \Omega$$ +
-Now, equation (3) tells us $R_{eq}=R_1+R_2$, so $$R_2=R_{eq}-R_1 = 50\Omega$$ +
-The power dissipated across Resistor 2 can be found using the same rewriting of equation (2) as above: +
-$$P_2=I^2R_2= 0.6 \text{ W}$$+
  • 184_notes/examples/week8_cap_series.txt
  • Last modified: 2021/06/29 00:08
  • by schram45