184_notes:ind_graphs

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
184_notes:ind_graphs [2022/11/26 14:44] valen176184_notes:ind_graphs [2022/12/07 14:39] valen176
Line 1: Line 1:
-In these notes, we will examine a few examples of changing magnetic fluxes and associated induced voltages. First let's consider when $\Phi_B$ rises and falls linearly with the same magnitude of slope:+===== Induction Graphs ===== 
 + 
 +In these notes, we will examine a few examples of changing magnetic fluxes and associated induced voltages. Recall from the previous notes that these are related by **Faraday's Law** which says: 
 + 
 +$$V_{ind} = -\frac{d\Phi_b}{dt}$$ 
 + 
 +This is saying that the induced current is the **negative slope** of the magnetic flux. In other words, if the magnetic flux is increasing, then $V_{ind}$ will be negative, if the magnetic flux is decreasing, then $V_{ind}$ will be positive, and if the magnetic flux is constant, then $V_{ind} = 0$ 
 + 
 +First let's consider when $\Phi_B$ rises and falls linearly with the same magnitude of slope:
  
  
 [{{184_notes:examples:ind_graph1.png?800|  }}] [{{184_notes:examples:ind_graph1.png?800|  }}]
-From t = 0 to t = 5, $\Phi_B$ has a positive, constant slope, so Faraday's law tells us that $V_{ind}$ will be constant and **negative**. From t = 5 to t = 10, $\Phi_B$ has a positive, constant slope, so Faraday's law tells us that $V_{ind}$ will be constant and **positive**. 
  
-Specifically, in this case $\Phi_b(t)$ is defined as:+From $t = 0$ to $t = 5$, $\Phi_B(t)$ has a constant positive slope, so  $V_{ind}$ will be constant and **negative**. Conversely, from $t = 5$ to $t = 10$, $\Phi_B(t)$ has a constant negative slope, so $V_{ind}$ will be constant and **positive**. 
 + 
 +Specifically, in this case $\Phi_B(t)$ is defined as:
 $$ $$
 \Phi_B(t)= \Phi_B(t)=
Line 21: Line 30:
     \end{cases}     \end{cases}
 $$ $$
-Which finally means that $V_{ind}$ is:+Now we can multiply by $-1$ because of the negative sign in Faraday's law to find $V_{ind}$:
 $$ $$
 V_{ind}= V_{ind}=
Line 31: Line 40:
  
  
 +Next, let's consider an example with a few different slopes:
 [{{184_notes:examples:ind_graph2.png?800|  }}] [{{184_notes:examples:ind_graph2.png?800|  }}]
  
-More Words+We can see that from $t=0$ to $t = 10$, $\Phi_B(t)$ has a positive slope, so $V_{ind}$ is negative on that time interval. However, $\Phi_B(t)$ is steeper from $t=5$ to $t=10$, so $V_{ind}$ is **more negative** on that time interval than from $t = 0$ to $t = 5$. From $t = 10$ to $t = 15$, $\Phi_B(t)$ has a constant and negative slope, so $V_{ind}$ is constant and positive on that time interval. Specifically we have that: 
 + 
 + 
 +$$ 
 +\Phi_B(t)= 
 +    \begin{cases} 
 +        2t & \text{if } 0<t<5\\ 
 +        5t -15 & \text{if } 5<t<10\\ 
 +        -10t + 135 & \text{if } 10<t<15 
 +    \end{cases} 
 +$$ 
 +Which means $\frac{d \Phi_B}{dt}$ is: 
 +$$ 
 +\frac{d \Phi_B}{dt}= 
 +    \begin{cases} 
 +        2 & \text{if } 0<t<5\\ 
 +        5 & \text{if } 5<t<10\\ 
 +        -10 & \text{if } 10<t<15 
 +    \end{cases} 
 +$$ 
 +Which finally means that $V_{ind}$ is: 
 +$$ 
 +V_{ind}= 
 +    \begin{cases} 
 +        -2 & \text{if } 0<t<5\\ 
 +        -5 & \text{if } 5<t<10\\ 
 +        10 & \text{if } 10<t<15 
 +    \end{cases} 
 +$$ 
 + 
 +Finally, let's look at an example with a non-linear $\Phi_B(t)$:
  
 [{{184_notes:examples:ind_graph3.png?800|  }}] [{{184_notes:examples:ind_graph3.png?800|  }}]
  
-Some final words+$\Phi_B(t)$ looks like a quadratic centered about t = 2. We can see that while $\Phi_B(t)$ is decreasing ($0<t<2$), $V_{ind}$ is positive, and while $\Phi_B(t)$ is increasing ($2<t<8$), $V_{ind}$ is negative.  
 + 
 +Specifically, in this case we have: 
 + 
 +$$\Phi_B(t) = (t-2)^2$$ 
 + 
 +Taking a first derivative with respect to time yields: 
 + 
 +$$\frac{d \Phi_B}{dt} = 2(t-2)$$ 
 + 
 +Multiplying by $-1$ to find $V_{ind}$ gives: 
 + 
 +$$V_{ind} = -2(t-2)$$
  • 184_notes/ind_graphs.txt
  • Last modified: 2022/12/07 14:43
  • by valen176