This is an old revision of the document!
Example: Calculating the momentum of a fast-moving object
An electron is observed to be moving with a velocity of $\langle -2.05\times10^7, 6.02\times10^7, 0\rangle\:\dfrac{m}{s}$. Determine the momentum of this electron.
Setup
You need to compute the momentum of this electron using the information provided and any information that you can collect or assume.
Facts
- An electron is in motion
- It has a velocity of $\langle -2.05\times10^7, 6.02\times10^7, 0\rangle\:\dfrac{m}{s}$.
- This velocity is near the speed of light ($c = 3.00\times10^8 \dfrac{m}{s}$).
Lacking
- The mass of the electron is not given, but can be found online ($m_e = 9.11\times10^{-31} kg$).
Approximations & Assumptions
- The electron does not experience any interactions, so its velocity will remain unchanged.
Representations
- The momentum of the electron is given by $\vec{p} = \gamma m \vec{v}$ where $\gamma = \dfrac{1}{\sqrt{1-\left(\dfrac{|\vec{v}|}{c}\right)^2}}$.
Solution
First, we compute the speed of the electron.
$$|\vec{v}| = \sqrt{v_x^2+v_y^2+v_z^2} = \sqrt{(-2.05\times10^7 \dfrac{m}{s})^2+(6.02\times10^7 \dfrac{m}{s})^2+(0)^2} = 6.36 \times 10^7 \dfrac{m}{s}$$