184_notes:ind_graphs

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
184_notes:ind_graphs [2022/12/07 14:39] valen176184_notes:ind_graphs [2022/12/07 14:43] (current) valen176
Line 5: Line 5:
 $$V_{ind} = -\frac{d\Phi_b}{dt}$$ $$V_{ind} = -\frac{d\Phi_b}{dt}$$
  
-This is saying that the induced current is the **negative slope** of the magnetic flux. In other words, if the magnetic flux is increasing, then $V_{ind}$ will be negative, if the magnetic flux is decreasing, then $V_{ind}$ will be positive, and if the magnetic flux is constant, then $V_{ind} = 0$+This is saying that the induced current is the **negative slope** of the magnetic flux. In other words, if the magnetic flux is increasing, then $V_{ind}$ will be negative, if the magnetic flux is decreasing, then $V_{ind}$ will be positive, and if the magnetic flux is constant, then $V_{ind} = 0$
  
-First let's consider when $\Phi_B$ rises and falls linearly with the same magnitude of slope:+First let's consider when an example where $\Phi_B$ rises and falls linearly with the same magnitude of slope:
  
  
  • 184_notes/ind_graphs.txt
  • Last modified: 2022/12/07 14:43
  • by valen176