Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
183_notes:acceleration [2014/07/10 20:54] – [Acceleration] caballero | 183_notes:acceleration [2021/02/04 23:23] (current) – [Why not just use change in momentum?] stumptyl | ||
---|---|---|---|
Line 5: | Line 5: | ||
==== Newton' | ==== Newton' | ||
- | The Momentum Principle (or Newton' | + | The Momentum Principle (or Newton' |
→Fnet=m→a=Δ→pΔt | →Fnet=m→a=Δ→pΔt | ||
Line 13: | Line 13: | ||
→a=Δ→pmΔt=mΔ→vmΔt=Δ→vΔt | →a=Δ→pmΔt=mΔ→vmΔt=Δ→vΔt | ||
- | where the last two equals signs hold only if the mass of the system is not changing. | + | __//where the last two equals signs hold only if the mass of the system is not changing. |
+ | //__ | ||
==== Acceleration ==== | ==== Acceleration ==== | ||
- | //Acceleration is a vector quantity that quantifies how quickly the velocity of a system is changing.// | + | **Acceleration** is a vector quantity that quantifies how quickly the velocity of a system is changing. |
The acceleration can be defined in two ways and each is useful in different problems or ways of thinking. From Newton' | The acceleration can be defined in two ways and each is useful in different problems or ways of thinking. From Newton' | ||
Line 23: | Line 23: | ||
→a=→Fnetm | →a=→Fnetm | ||
- | Notice that this means that the acceleration of system always points in the direction of the net force (because mass is always a positive quantity). | + | //Notice that this means that the acceleration of system always points in the direction of the net force (because mass is always a positive quantity).// |
- | It can also be defined (as above) in terms of the change in velocity over time. If this change is calculated over a time interval (Δt), then you obtain the //average// acceleration, | + | It can also be defined (as above) in terms of the change in velocity over time. If this change is calculated over a time interval (Δt), then you obtain the //average acceleration, |
→aavg=Δ→vΔt=→vf−→viΔt | →aavg=Δ→vΔt=→vf−→viΔt | ||
- | If we allow the time interval to shrink ([[: | + | If we allow the time interval to shrink ([[: |
+ | // | ||
→a=limΔt→0→aavg=limΔt→0Δ→vΔt=d→vdt | →a=limΔt→0→aavg=limΔt→0Δ→vΔt=d→vdt | ||
- | The units of acceleration are meters per second per second (ms2). | + | |
==== Why not just use change in momentum? ==== | ==== Why not just use change in momentum? ==== | ||
Line 39: | Line 39: | ||
If you have one way of describing motion (i.e., using the concept of a change in momentum), why should you learn about acceleration? | If you have one way of describing motion (i.e., using the concept of a change in momentum), why should you learn about acceleration? | ||
- | **Finish | + | Acceleration is a useful concept in mechanics, because it can help characterize the motion of systems (e.g., constant velocity motion has no acceleration). |
+ | |||
+ | While you can obtain |