183_notes:examples:earth_s_translational_angular_momentum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:earth_s_translational_angular_momentum [2014/11/16 20:25] pwirving183_notes:examples:earth_s_translational_angular_momentum [2014/11/20 16:30] (current) pwirving
Line 6: Line 6:
 === Facts === === Facts ===
  
 +Mass of the Earth: 6 X 1024kg
  
- +Distance from the Sun: 1.5 x 1011m
  
  
 === Lacking === === Lacking ===
  
 +The magnitude of the Earth's translational (orbital) angular momentum relative to the Sun when the Earth is at location A on the representation and when it is at location B on the representation.
  
  
Line 18: Line 19:
 === Approximations & Assumptions === === Approximations & Assumptions ===
  
 +Assume Earth moves in a perfect circular orbit
  
 +Assume main interaction is with the sun
  
  
Line 24: Line 27:
  
  
-{{course_planning:projects:mi3e_11-006.jpg?400}}+{{183_projects:mi3e_11-002.jpg?400}}
  
 +Circumference of a circle = 2πr
 +
 +p=mv
 +
 +v=s/t
 +
 +|Ltrans|=|rA||p|sinθ
  
  
Line 31: Line 41:
 === Solution === === Solution ===
  
-The Earth makes one complete orbit of the Sun in 1 year, so its average speed is:+The Earth makes one complete orbit of the Sun in 1 year, so you need to break down 1 year into seconds and know that the distance the Earth travels in that time is 2πr in order to find its average speed is: 
 + 
 +v=2π(1.5×1011m)(365)(24)(60)(60)s=3.0×104m/s 
 + 
 +With this average velocity we can find the momentum of Earth at location A as we know the mass of the Earth and now know the velocity of the Earth. 
 + 
 +p=0,6×1024kg3.0×104m/s,0 
 + 
 +Computing for momentum we get: 
 + 
 +p=0,1.8×1029,0kgm/s 
 + 
 +p∣=1.8×1029kgm/s 
 + 
 +We know that the magnitude of the Earth's translational angular momentum relative to the sun is given by  |Ltrans,Sun|=|rA||p|sinθ 
 + 
 +Ltrans,Sun∣=(1.5×1011m)(1.8×1029kgm/s)sin90 
 + 
 +Compute for |Ltrans,Sun| by inputting the known values for the variables.
  
-$v = \frac{2\Pi}{s})(\frac{2\pi\;radians}{rev})$+$\mid\vec{L}_{trans,Sun}\mid = 2.7 \times 10^{40kg \cdot m^2/s$
  
 +It turns out that at location B,r,p, and θ are the same as they were at location A, so Ltrans,Sun also has the same value it had at location A.
  • 183_notes/examples/earth_s_translational_angular_momentum.1416169528.txt.gz
  • Last modified: 2014/11/16 20:25
  • by pwirving