183_notes:examples:earth_s_translational_angular_momentum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:earth_s_translational_angular_momentum [2014/11/20 00:05] pwirving183_notes:examples:earth_s_translational_angular_momentum [2014/11/20 16:30] (current) pwirving
Line 9: Line 9:
  
 Distance from the Sun: 1.5 x 1011m Distance from the Sun: 1.5 x 1011m
- 
- 
- 
- 
- 
- 
  
  
Line 26: Line 20:
  
 Assume Earth moves in a perfect circular orbit Assume Earth moves in a perfect circular orbit
 +
 +Assume main interaction is with the sun
  
  
Line 32: Line 28:
  
 {{183_projects:mi3e_11-002.jpg?400}} {{183_projects:mi3e_11-002.jpg?400}}
 +
 +Circumference of a circle = 2πr
 +
 +p=mv
  
 v=s/t v=s/t
  
-$\left|\vec{L}_{trans}\right| = \left|\vec{r}_A \times \vec{p}\right| = \left|\vec{r}_A\right|\left|\vec{p}\right|\sin \theta$+|Ltrans|=|rA||p|sinθ
  
  
Line 41: Line 41:
 === Solution === === Solution ===
  
-The Earth makes one complete orbit of the Sun in 1 year, so its average speed is:+The Earth makes one complete orbit of the Sun in 1 year, so you need to break down 1 year into seconds and know that the distance the Earth travels in that time is 2πr in order to find its average speed is:
  
 v=2π(1.5×1011m)(365)(24)(60)(60)s=3.0×104m/s v=2π(1.5×1011m)(365)(24)(60)(60)s=3.0×104m/s
  
-At location A+With this average velocity we can find the momentum of Earth at location A as we know the mass of the Earth and now know the velocity of the Earth.
  
 p=0,6×1024kg3.0×104m/s,0 p=0,6×1024kg3.0×104m/s,0
 +
 +Computing for momentum we get:
  
 p=0,1.8×1029,0kgm/s p=0,1.8×1029,0kgm/s
  
 p∣=1.8×1029kgm/s p∣=1.8×1029kgm/s
 +
 +We know that the magnitude of the Earth's translational angular momentum relative to the sun is given by  |Ltrans,Sun|=|rA||p|sinθ
  
 Ltrans,Sun∣=(1.5×1011m)(1.8×1029kgm/s)sin90 Ltrans,Sun∣=(1.5×1011m)(1.8×1029kgm/s)sin90
  
-$\mid\vec{L}_{trans,Sun}\mid = 2.7 \times 10^{40} kg \cdot m^2/s$+Compute for $\left|\vec{L}_{trans,Sun}\right|$ by inputting the known values for the variables.
  
-At location B,r,p, and θ are the same as they were at location A, so Ltrans,Sun also has the same value it had at location A.+$\mid\vec{L}_{trans,Sun}\mid = 2.7 \times 10^{40} kg \cdot m^2/s$
  
 +It turns out that at location B,r,p, and θ are the same as they were at location A, so Ltrans,Sun also has the same value it had at location A.
  • 183_notes/examples/earth_s_translational_angular_momentum.1416441929.txt.gz
  • Last modified: 2014/11/20 00:05
  • by pwirving