183_notes:examples:maximally_inelastic_collision_of_two_identical_carts

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
183_notes:examples:maximally_inelastic_collision_of_two_identical_carts [2014/11/04 07:17] pwirving183_notes:examples:maximally_inelastic_collision_of_two_identical_carts [2014/11/06 03:46] (current) pwirving
Line 17: Line 17:
 === Lacking === === Lacking ===
  
 +Find the final momentum, final speed, and final kinetic energy of the carts in terms of their initial values.
  
 +What is the change in internal energy of the two carts?
  
  
 === Approximations & Assumptions === === Approximations & Assumptions ===
  
-Neglect friction and air resistance +External forces are negligible during the collision, so neglect friction and air resistance, which means the total momentum of the system is constant.  
  
 === Representations === === Representations ===
Line 30: Line 33:
 Surroundings: Earth, track, air (neglect friction and air resistance)  Surroundings: Earth, track, air (neglect friction and air resistance) 
  
 +{{183_notes:examples:mi3e_10-006.jpg}}
 +
 +$\vec{p}_f = \vec{p}_i + \vec{F}_{net} \Delta t$
 +
 +$E_f = E_i + W + Q$
 +
 +$K = \frac{1}{2}mv^{2} = \frac{1}{2}m(\frac{p}{m})^{2} = \frac{1}{2}m(\frac{p^{2}}{m})$
  
  
Line 36: Line 46:
 Since the y and z components of momentum don't change, we can work with only x components Since the y and z components of momentum don't change, we can work with only x components
  
-From the momentum principle (x components):+From the momentum principle (x components) we know that the momentum before is equal to the momentum after:
  
 $${p}_{1xf} + {p}_{2xf} = {p}_{1xi}$$ $${p}_{1xf} + {p}_{2xf} = {p}_{1xi}$$
 +
 +After the collision ${p}_{2xf}$ is equal to ${p}_{1xf}$ as they are stuck together so:
  
 $$2p_{1xf} = p_{1xi}$$ $$2p_{1xf} = p_{1xi}$$
 +
 +Rearrange to isolate $p_{1xf}$
  
 $$p_{1xf} = \dfrac{1}{2}p_{1xi}$$ $$p_{1xf} = \dfrac{1}{2}p_{1xi}$$
  
-The final speed of the stuck-together carts its half the initial speed:+Therefore the final speed of the stuck-together carts its half the initial speed:
  
 $$v_{f} = \dfrac{1}{2}{v_{i}}$$ $$v_{f} = \dfrac{1}{2}{v_{i}}$$
  
-Final translational kinetic energy:+Since we know the speed of the carts we can calculate their translational kinetic energy. 
 + 
 +Final translational kinetic energy is equal to twice the kinetic energy using the final velocity as $K_{1f} = K_{2f}$
  
 $$(K_{1f} + K_{2f}) = 2(\dfrac{1}{2}mv^2_{f})$$ $$(K_{1f} + K_{2f}) = 2(\dfrac{1}{2}mv^2_{f})$$
 +
 +Substitute in the final speed of the stuck-together carts:
  
 $$(K_{1f} + K_{2f}) = 2(\dfrac{1}{2}m(\dfrac{1}{2}v_{i})^2) = \dfrac{1}{4}mv^2_{i}$$ $$(K_{1f} + K_{2f}) = 2(\dfrac{1}{2}m(\dfrac{1}{2}v_{i})^2) = \dfrac{1}{4}mv^2_{i}$$
 +
 +Substituting back in $K_{1i}$ in order to put the final kinetic energy in terms of the initial kinetic energy we get:
  
 $$(K_{1f} + K_{2f}) = \dfrac{K_{1i}}{2}$$ $$(K_{1f} + K_{2f}) = \dfrac{K_{1i}}{2}$$
  
-From the energy principle:+We know the initial and final translational kinetic energies of the system, so we can use the energy principle to find the change in internal energy:
  
 $$K_{1f} + K_{2f} + E_{int,f} = K_{1i} + E_{int,i}$$ $$K_{1f} + K_{2f} + E_{int,f} = K_{1i} + E_{int,i}$$
 +
 +Rearrange to get the final internal energy minus the initial internal energy one one side.
  
 $$E_{int,f} - E_{int,i} = K_{1i} - (K_{1f} + K_{2f})$$ $$E_{int,f} - E_{int,i} = K_{1i} - (K_{1f} + K_{2f})$$
 +
 +$E_{int,f} - E_{int,i}$ is the same as $\Delta E_{int}$ and this is what we are trying to find so substitute this in. Also substitute $\dfrac{K_{1i}}{2}$ for $(K_{1f} + K_{2f})$. We get:
  
 $$\Delta E_{int} = K_{1i} - \dfrac{K_{1i}}{2}$$ $$\Delta E_{int} = K_{1i} - \dfrac{K_{1i}}{2}$$
 +
 +Resolve the right hand side and you get:
  
 $$\Delta E_{int} = \dfrac{K_{1i}}{2}$$ $$\Delta E_{int} = \dfrac{K_{1i}}{2}$$
  • 183_notes/examples/maximally_inelastic_collision_of_two_identical_carts.1415085451.txt.gz
  • Last modified: 2014/11/04 07:17
  • by pwirving