Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 183_notes:examples:momentumfast [2014/07/10 14:17] – [Solution] caballero | 183_notes:examples:momentumfast [2024/01/30 14:18] (current) – [Setup] hallstein | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| ====== Example: Calculating the momentum of a fast-moving object ====== | ====== Example: Calculating the momentum of a fast-moving object ====== | ||
| - | An electron is observed to be moving with a velocity of $\langle -2.05\times10^7, | + | An electron is observed to be moving with a velocity of $\langle -2.05\times10^7, |
| ==== Setup ==== | ==== Setup ==== | ||
| Line 11: | Line 11: | ||
| * An electron is in motion | * An electron is in motion | ||
| - | * It has a velocity | + | * It has a velocity, $\vec{v}_e=\langle -2.05\times10^7, |
| - | * This velocity | + | * The speed of the electron |
| === Lacking === | === Lacking === | ||
| - | * The mass of the electron is not given, but can be [[http://lmgtfy.com/? | + | * The mass of the electron is not given, but can be [[https://en.wikipedia.org/ |
| === Approximations & Assumptions === | === Approximations & Assumptions === | ||
| Line 30: | Line 30: | ||
| First, we compute the speed of the electron. | First, we compute the speed of the electron. | ||
| - | $$|\vec{v}| = \sqrt{v_x^2+v_y^2+v_z^2} = \sqrt{(-2.05\times10^7 \dfrac{m}{s})^2+(6.02\times10^7 \dfrac{m}{s})^2+(0)^2} = 6.36 \times 10^7 \dfrac{m}{s}$$ | + | $$|\vec{v}_e| = \sqrt{v_x^2+v_y^2+v_z^2} = \sqrt{(-2.05\times10^7 \dfrac{m}{s})^2+(6.02\times10^7 \dfrac{m}{s})^2+(0)^2} = 6.36 \times 10^7 \dfrac{m}{s}$$ |
| Next, we compute the gamma factor. | Next, we compute the gamma factor. | ||
| - | $$\gamma = \dfrac{1}{\sqrt{1-\left(\dfrac{|\vec{v}|}{c}\right)^2}} = \dfrac{1}{\sqrt{1-\left(\dfrac{6.36 \times 10^7 \dfrac{m}{s}}{3.00 \times 10^8 \dfrac{m}{s}}\right)^2}} = \dfrac{1}{\sqrt{1-(0.212)^2}}$$ | + | $$\gamma = \dfrac{1}{\sqrt{1-\left(\dfrac{|\vec{v}|}{c}\right)^2}} = \dfrac{1}{\sqrt{1-\left(\dfrac{6.36 \times 10^7 \dfrac{m}{s}}{3.00 \times 10^8 \dfrac{m}{s}}\right)^2}} = \dfrac{1}{\sqrt{1-(0.212)^2}}=1.02$$ |
| + | |||
| + | Finally, we compute the momentum vector. | ||
| + | |||
| + | $$\vec{p}_e = \gamma m_e \vec{v}_e = (1.02) (9.11\times10^{-31} kg) \langle -2.05\times10^7, | ||