Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
183_notes:examples:rotational_kinetic_energy_and_work [2014/10/31 15:20] – pwirving | 183_notes:examples:rotational_kinetic_energy_and_work [2014/11/14 07:01] (current) – pwirving | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ===== Example: | + | ===== Example: |
In the figure which is in the representations section you observe that a wheel is mounted on a stationary axel, which is nearly frictionless so that the wheel turns freely. The wheel has an inner ring with mass 5 kg and radius 10 cm and an outer ring with mass 2 kg and radius 25 cm; the spokes have negligible mass. A string with negligible mass is wrapped around the outer ring and you pull on it, increasing the rotational speed of the wheel. During the time that the wheel' | In the figure which is in the representations section you observe that a wheel is mounted on a stationary axel, which is nearly frictionless so that the wheel turns freely. The wheel has an inner ring with mass 5 kg and radius 10 cm and an outer ring with mass 2 kg and radius 25 cm; the spokes have negligible mass. A string with negligible mass is wrapped around the outer ring and you pull on it, increasing the rotational speed of the wheel. During the time that the wheel' | ||
=== Facts === | === Facts === | ||
+ | |||
+ | Inner ring of wheel has a mass of 5 kg and radius 10 cm | ||
+ | |||
+ | Outer ring has a mass of 2 kg and a radius of 25cm | ||
+ | |||
+ | String with negligible mass is wrapped around the outer ring and pulled on. | ||
=== Assumptions and Approximations === | === Assumptions and Approximations === | ||
+ | |||
+ | The rod has to be sufficiently thin so your not worried about contributions to the moment of inertia from parts of the rod that are further away from the center of mass. | ||
+ | |||
+ | Stationary axle is nearly frictionless so that the wheel turns freely. | ||
+ | |||
+ | The spokes of the wheel have negligible mass. | ||
+ | |||
+ | String wrapped around the outer ring has negligible mass. | ||
=== Lacking === | === Lacking === | ||
+ | |||
+ | During the time that the wheel' | ||
=== Representations === | === Representations === | ||
Line 14: | Line 30: | ||
Surroundings: | Surroundings: | ||
+ | |||
+ | {{course_planning: | ||
+ | |||
+ | Ef=Ei+W | ||
+ | |||
+ | Krot=12Iω2 | ||
+ | |||
+ | I=m1r2⊥1 + m2r2⊥2 | ||
=== Solution === | === Solution === | ||
Line 20: | Line 44: | ||
Ef=Ei+W | Ef=Ei+W | ||
+ | |||
+ | Substitute in equation for rotational energy for energy initial and energy final. | ||
12Iω2f=12Iω2i+W | 12Iω2f=12Iω2i+W | ||
+ | |||
+ | You are trying to find work so rearrange the equation to isolate W. | ||
W=12I(ω2f−ω2i) | W=12I(ω2f−ω2i) | ||
Line 28: | Line 56: | ||
I=(m1r2⊥1 + m2r2⊥2 + ⋅⋅⋅)inner + (m1r2⊥1 + m2r2⊥2)outer + ⋅⋅⋅ | I=(m1r2⊥1 + m2r2⊥2 + ⋅⋅⋅)inner + (m1r2⊥1 + m2r2⊥2)outer + ⋅⋅⋅ | ||
+ | |||
+ | The total inertia is then the inertia inner + the inertia outer. | ||
I=Iinner+Iouter | I=Iinner+Iouter | ||
Line 35: | Line 65: | ||
I=MinnerR2inner+MouterR2outer | I=MinnerR2inner+MouterR2outer | ||
- | I=(5kg)(.1m)2 + (2kg)(.25m)2 = (0.050 + 0.125) kg \cdot m^2 = 0.175 kg \cdot m^2$ | + | Substitute the corresponding values for the variables: |
- | Let m represent the mass of one atom in the rim. The moment of inertia is | + | I=(5kg)(.1m)2 + $(2 kg)(.25 |
- | I=m1r2⊥1 + m2r2⊥2 + m3r3⊥3 + m4r4⊥4+⋅⋅⋅ | + | We need to convert revolutions per second into radians per second: |
- | $I = m_{1}R^{2} + m_{2}R^{2} + m_{3}R^{2} + m_{4}R^{2} + \cdot \cdot \cdot$ | + | $\omega_{i} = (4\frac{rev}{s})(\frac{2\pi\; |
- | $I = [m_{1} + m_{1} + m_{1} + m_{1} + \cdot \cdot \cdot]R^2$ | + | $\omega_{f} |
- | I=MR2 | + | You, the Earth, and the axle will exert forces on the system. How much work does the Earth do? Zero, because the center of mass of the wheel doesn' |
- | We've assumed that the mass of the spokes is negligible compared to the mass of the rim, so that the total mass os just the mass of the atoms in the rim. | + | $W = \frac{1}{2}(0.175 kg \cdot m^{2})(44.0^2 + 25.1^2)\frac{radians^2}{s^2} = 114J$ |