183_notes:examples:sledding

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:sledding [2014/10/11 07:03] pwirving183_notes:examples:sledding [2014/10/22 04:06] (current) pwirving
Line 1: Line 1:
-===== Example: The Jumper =====+===== Example: Sledding =====
  
 A little girl is riding her sled on a hill. If she starts a distance d up the hill, which makes an angle θ with the horizontal, how far will she travel along the flat snowy ground? A little girl is riding her sled on a hill. If she starts a distance d up the hill, which makes an angle θ with the horizontal, how far will she travel along the flat snowy ground?
Line 40: Line 40:
  
 === Solution === === Solution ===
 +
 +We could solve this using forces of kinematics; but, let's apply the energy principle because we can avoid vector quantities in the calculation.
 +
 +First we must decide the system and surroundings.
 +
 +System: Sled+Kid+Earth
 +Surroundings: Snow
 +
 +Starting with the principle that change in energy in the system is equal to the work done by the surroundings.
  
 ΔEsystem=Wsurroundings ΔEsystem=Wsurroundings
 +
 +The change in energy can be in the form of change of kinetic and change in gravitational potential energy.
  
 ΔK+ΔUg=Wfriction ΔK+ΔUg=Wfriction
  
-no change ΔK=0+No change ΔK=0 as its initial and final state of the sled is at rest.
  
 ΔUg=WfrictionWfriction? ΔUg=WfrictionWfriction?
Line 58: Line 69:
  
 ΔUg=W1+W2 ΔUg=W1+W2
 +
 +Breaking work down into force by change in distance.
  
 ΔUg=f1Δr1+f2Δr2 ΔUg=f1Δr1+f2Δr2
  
-r2 is what we care about. (position change along flat part)+r2 is what we are trying to solve for as this is the position change along flat part.
  
 What's f1 and f2? What's f1 and f2?
Line 69: Line 82:
 {{course_planning:projects:f2b.jpg?200|}} {{course_planning:projects:f2b.jpg?200|}}
  
-$\sum{F_{x}} = f_{1} - mgsinθ = ma_{1} \longrightarrowdontneedthisbecausef_{1}=μ_{k}N$+Need to find $f_{1}&f_{2}$ 
 + 
 +To find $F_{1}wecansaythatthesumoftheforcesinthexdirectionareequaltoma_{1}$ But we don't need this because we know that f1=μkN
 + 
 +Fx=f1mgsinθ=ma1  
 + 
 +The sum of the forces in the y direction we do need because this allows us to express N.
  
 Fy=Nmgcosθ=0 Fy=Nmgcosθ=0
  
 mgcosθ=N mgcosθ=N
 +
 +If f1=μkN then:
  
 f1=μkmgcosθ f1=μkmgcosθ
 +
 +To find f2 we must do the same thing and add all the forces in the x and y directions. Again because not using kinematics we don't need accelerations and instead want an equation that expresses f2.
  
 Fx=f2=ma2f2=μkN=μkmg Fx=f2=ma2f2=μkN=μkmg
Line 81: Line 104:
 Fy=Nmg=0 Fy=Nmg=0
  
-Again because not using kinematics we don't need accelerations.+We substitute in for f1, f2 and d the distance down the slope into the previous equation for gravitational potential energy with minuses on the $\vec{f}'sastheyareinoppositionofthe\vec{r}'s$.
  
 ΔUg=f1Δr1+f2Δr2 ΔUg=f1Δr1+f2Δr2
Line 88: Line 111:
  
 ΔUg=(μkmgcosθ)d(μkmg)x ΔUg=(μkmgcosθ)d(μkmg)x
 +
 +Substitute in the equation for gravitational potential energy for ΔUg
  
 +mg(yfyi)=μkmgdcosθμkmgx +mg(yfyi)=μkmgdcosθμkmgx
 +
 +Rearrange to get the following expression.
  
 yfyi=μk(dcosθ+x) yfyi=μk(dcosθ+x)
  
-What is yfyi in terms of what we know?+What is yfyi in terms of what we know? Eventually we want to express x in terms of variables we know.
  
 {{course_planning:course_notes:final_sledding.jpg?200|}} {{course_planning:course_notes:final_sledding.jpg?200|}}
 +
 +From the diagram of the incline we get:
  
 yfyi=dsinθ yfyi=dsinθ
 +
 +Substitue dsinθ for yfyi and then rearrange to express x in terms of known variables.
  
 dsinθ=μk(dcosθ+x) dsinθ=μk(dcosθ+x)
Line 106: Line 137:
  
 x=d(sinθμkcosθμk) x=d(sinθμkcosθμk)
 +
 +A check of the units reveals that:
  
 [x]=m [x]=m
Line 111: Line 144:
 [d]=m [d]=m
  
-All other quantities are unitless. +Which makes sense as all the other quantities are unit less.
  
  
 +E=γmc2
  • 183_notes/examples/sledding.1413011029.txt.gz
  • Last modified: 2014/10/11 07:03
  • by pwirving