183_notes:examples:sliding_to_a_stop

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:sliding_to_a_stop [2014/09/22 04:24] pwirving183_notes:examples:sliding_to_a_stop [2018/02/03 23:24] (current) – [Example: Sliding to a Stop] hallstein
Line 2: Line 2:
 ===== Example: Sliding to a Stop ===== ===== Example: Sliding to a Stop =====
  
-You take a 3 kg metal block and slide it along the floor, where the coefficient of friction is only 0.4. You release the block with an initial velocity of 6,0,0m/s. How long will it take for the block to come to a stop? How far does the block move?+You take a 3 kg metal block and slide it along the floor, where the coefficient of friction is only 0.4. You release the block with an initial velocity of 6,0,0m/s. How long will it take for the block to come to a stop? How far does the block move? 
  
 === Facts ==== === Facts ====
Line 34: Line 34:
 === Solution === === Solution ===
  
-x:Δpx=FNΔt+$ x: \Delta p_x = -\mu_k F_N\Delta t $
  
 y:Δpy=(FNmg)Δt=0 y:Δpy=(FNmg)Δt=0
 +
 +Write equation of y direction in terms of FN to sub into x direction equation.
  
 (FNmg)Δt=0  (FNmg)Δt=0 
  
-$ F_N \Delta t - mg \Delta t = 0  \,\,\,\,\,\,\,Multiply\, out.$+Multiply out
  
-$ F_N \Delta t mg \Delta t  \,\,\,\,\,\,\,\,\,Make\, equal\, to\, each\, other.$+$ F_N \Delta t mg \Delta t = 0  $
  
-FN=mgCancelΔt.+Make equal to each other
  
-Combining these two equations and substituting in mg for F_N and writing p_x mv_x $, we get the following equation:+F_N \Delta t mg \Delta t  $
  
-\Delta(mv_x) = -mg\Delta t $+Cancel Δt
  
-\Delta(v_x) - g\Delta t  Cancel the masses+F_N mg   $
  
-Δ(t)=0vxig=vxig+Combining these two equations and substituting in mg for FN and writing px=Δ(mvx), we get the following equation: 
 + 
 +Δ(mvx)=μkmgΔt 
 + 
 +Cancel the masses 
 + 
 +Δ(vx)=μkgΔt   
 + 
 +Rearrange to solve for Δt and sub in 0 - vxi for Δ(vx) 
 + 
 +$ \Delta(t) = \dfrac{0 - v_{xi}}{-\mu_k g} = \dfrac{v_{xi}}{\mu_k g} 
 + 
 +Fill in values for variables and solve for $\Delta t$
  
 Δ(t)=6m/s0.4(9.8N/kg)=1.53s Δ(t)=6m/s0.4(9.8N/kg)=1.53s
  
-Since the net force was constantvx,avg=(vxi+vxf)/2, so+Since the net force was constant we can say the average velocity can be described as: vx,avg=(vxi+vxf)/2, so
  
 Δx/Δt=((6+0)/2)m/s=3m/s Δx/Δt=((6+0)/2)m/s=3m/s
 +
 +Sub in for Δt and solve for Δx
  
 Δx=(3m/s)(1.53s)=4.5m Δx=(3m/s)(1.53s)=4.5m
  • 183_notes/examples/sliding_to_a_stop.1411359891.txt.gz
  • Last modified: 2014/09/22 04:24
  • by pwirving