184_notes:examples:week10_force_on_charge

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
184_notes:examples:week10_force_on_charge [2017/10/29 20:11] – created tallpaul184_notes:examples:week10_force_on_charge [2017/11/02 13:32] (current) dmcpadden
Line 1: Line 1:
-=====Magnetic Field from a Current Segment===== +=====Magnetic Force on Moving Charge===== 
-You may have read about how to find the [[184_notes:b_current#Magnetic_Field_from_a_Very_Long_Wire|magnetic field from very long wire of current]]Now, what is the magnetic field from a single segment? Suppose we have the configuration shown below. Your observation point is at the origin, and the segment of current $Iruns in a straight line from $\langle -L, 0, 0 \rangleto $\langle 0, -L, 0 \rangle$+Suppose you have a moving charge (q=1.5 mC) in a magnetic field (B=0.4 mT ˆy). The charge has speed of 10 m/sWhat is the magnetic force on the charge if its motion is in the $+x$-direction? The $-y$-direction?
- +
-{{ 184_notes:9_current_segment_bare.png?200 |Segment of Current}}+
  
 ===Facts=== ===Facts===
-  * The current in the segment is $I$. +  * The charge is $q=1.5 \text{ mC}$. 
-  * The observation point is at the origin+  * There is an external magnetic field B=0.4 mT ˆy
-  * The segment stretches from from $\langle -L, 0, 0 \rangleto $\langle 0, -L, 0 \rangle$.+  * The velocity of the charge is $\vec{v} = 10 \text{ m/s } \hat{x}or $\vec{v} = -10 \text{ m/s } \hat{y}$.
  
 ===Lacking=== ===Lacking===
-  * $\vec{B}$+  * $\vec{F}_B$
  
 ===Approximations & Assumptions=== ===Approximations & Assumptions===
-  * The current is steady, and the wire segment is uniform.+  * The magnetic force on the charge contains no unknown contributions. 
 +  * The charge is moving at a constant speed (no other forces acting on it)
  
 ===Representations=== ===Representations===
-  * We represent the Biot-Savart Law for magnetic field from current as +  * We represent the magnetic force on moving charge as 
-$$\vec{B}= \int \frac{\mu_0}{4 \pi}\frac{I \cdot d\vec{l}\times \vec{r}}{r^3}$$ +$$\vec{F}= \vec{v} \times \vec{B}$$ 
-  * We represent the situation with diagram given above.+  * We represent the two situations below.
  
 +{{ 184_notes:10_moving_charge.png?500 |Moving Charge in a Magnetic Field}}
 ====Solution==== ====Solution====
-Below, we show a diagram with a lot of pieces of the Biot-Savart Law unpacked. We show an example dland a separation vector $\vec{r}.Noticethat\text{d}\vec{l}isdirectedalongthesegment,inthesamedirectionasthecurrent.Theseparationvector\vec{r}$ points as always from source to observation.+Let's start with the first casewhen $\vec{v}=10 \text{ m/s } \hat{x}$.
  
-{{ 184_notes:9_current_segment.png?400 |Segment of Current}}+The trickiest part of finding magnetic force is the cross-product. You may remember from the [[184_notes:math_review#Vector_Multiplication|math review]] that there are a couple ways to do the cross product. Below, we show how to use vector components, for which it's helpful to rewrite $\vec{v}and\vec{B}$ with their components.
  
-For now, we write dl=dx,dy,0 
-and r=robsrsource=0x,y,0=x,y,0 
-Notice that we can rewrite y as y=Lx. This is a little tricky to arrive at, but is necessary to figure out unless you rotate your coordinate axes, which would be an alternative solution to this example. If finding y is troublesome, it may be helpful to rotate. We can take the derivative of both sides to find dy=dx. We can now plug in to express dl and r in terms of x and dx: 
-dl=dx,dx,0 
-r=x,L+x,0 
-Now, a couple other quantities that we see will be useful: 
-dl×r=0,0,dx(L+x)(dx)(x)=0,0,Ldx=Ldxˆz 
-r3=(x2+(L+x)2)3/2 
-The last thing we need is the bounds on our integral. Our variable of integration is x, since we chose to express everything in terms of x and dx. Our segment begins at x=L, and ends at x=0, so these will be the limits on our integral. Below, we write the integral all set up, and then we evaluate using some assistance some [[https://www.wolframalpha.com/input/?i=integral+from+-L+to+0+of+L%2F(x%5E2%2B(L%2Bx)%5E2)%5E(3%2F2)+dx|Wolfram Alpha]]. 
 \begin{align*} \begin{align*}
-\vec{B} &= \int \frac{\mu_0}{4 \pi}\frac{I \cdot d\vec{l}\times \vec{r}}{r^3} \\ +  \vec{v} &= \langle 10, 0, 0 \rangle \textm/s} \\ 
-        &\int_{-L}^0 \frac{\mu_0}{4 \pi}\frac{IL\text{d}x}{(x^2 + (L+x)^2)^{3/2}}\hat{z} \\ +  \vec{B&\langle 0, 4\cdot 10^{-4}, 0 \rangle \textT} \\ 
-        &= \frac{\mu_0}{2 \pi}\frac{I}{L}\hat{z}+  \vec{v} \times \vec{B&\langle v_y B_z - v_z B_y, v_z B_x - v_x B_z, v_x B_y - v_y B_x \rangle \\ 
 +                         &= \langle 0, 0, 4\cdot 10^{-3} \rangle \textT} \cdot \text{m/s}
 \end{align*} \end{align*}
 +
 +Alternatively, we could use the whole vectors and the angle between them. We find that we obtain the same result for the cross product. One would need to use the [[184_notes:rhr|Right Hand Rule]] to find that the direction of the cross product is +ˆz. The magnitude is given by
 +
 +|v×B|=|v||B|sinθ=(10 m/s)(4104 T)sin90o=4103 Tm/s
 +
 +We get the same answer with both methods. Now, for the force calculation:
 +
 +FB=qv×B=1.5 mC 4103 Tm/s ˆz=6μN
 +
 +Notice that the sin90o is equal to 1. This means that this is the maximum force that the charge can feel, and we get this value because the velocity and the B-field are exactly perpendicular. Any other orientation would have yielded a weaker magnetic force. In fact, in the second case, when the velocity is parallel to the magnetic field, the cross product evaluates to 0. See below for the calculations.
 +
 +\begin{align*}
 +  \vec{v} &= \langle 0, -10, 0 \rangle \text{ m/s} \\
 +  \vec{B} &= \langle 0, 4\cdot 10^{-4}, 0 \rangle \text{ T} \\
 +  \vec{v} \times \vec{B} &= \langle v_y B_z - v_z B_y, v_z B_x - v_x B_z, v_x B_y - v_y B_x \rangle \\
 +                         &= \langle 0, 0, 0 \rangle
 +\end{align*}
 +
 +Or, with whole vectors:
 +
 +|v×B|=|v||B|sinθ=(10 m/s)(4104 T)sin0=0
 +
 +When the velocity is parallel to the magnetic field, FB=0.
  • 184_notes/examples/week10_force_on_charge.1509307913.txt.gz
  • Last modified: 2017/10/29 20:11
  • by tallpaul