Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
184_notes:examples:week3_particle_in_field [2021/05/19 14:30] – schram45 | 184_notes:examples:week3_particle_in_field [2021/05/19 15:01] (current) – schram45 | ||
---|---|---|---|
Line 22: | Line 22: | ||
\vec{F}=q\vec{E} &&&&&&&& | \vec{F}=q\vec{E} &&&&&&&& | ||
\end{align*} | \end{align*} | ||
- | |||
- | ===Assumptions=== | ||
- | * Point Charge: Allows us to use the electric potential equation, and the problem does not specify anything otherwise. | ||
- | * Constant charge: Simplifies the value of charge, meaning it is not charging or discharging over time. | ||
- | * Electric field is constant in accelerator: | ||
- | * No gravitational effects: Gravity would be another force acting on our charge in this situation, however for simplicity we are not told any mass and neglect gravity for this problem. | ||
- | * Conservation of energy: No energy is being added or taken out of the system. This means as the charge loses electric potential energy as it leaves the accelerator, | ||
===Representations=== | ===Representations=== | ||
[{{ 184_notes: | [{{ 184_notes: | ||
+ | |||
+ | <WRAP TIP> | ||
+ | ===Assumption=== | ||
+ | No gravitational effects are being considered in this problem. Typically point charges are really small and have negligible masses. This means that the gravitational force would be very small compared to the electric force acting on the particle in the accelerator and can be excluded from the calculations and representation. | ||
+ | </ | ||
===Goal=== | ===Goal=== | ||
Line 72: | Line 70: | ||
& | & | ||
\end{align*} | \end{align*} | ||
+ | |||
+ | <WRAP TIP> | ||
+ | ===Assumption=== | ||
+ | Assuming the electric field is constant within the accelerator allows the E0 to be taken out of the integral in this problem. | ||
+ | </ | ||
+ | |||
The physical significance of this result is that the particle " | The physical significance of this result is that the particle " | ||
+ | |||
+ | <WRAP TIP> | ||
+ | ===Assumption=== | ||
+ | Assuming there is a conservation of energy allows the total change in energy of the system to be zero. | ||
+ | </ | ||
+ | |||
Remember that →vi=0, | Remember that →vi=0, | ||
\begin{align*} | \begin{align*} |