Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
184_notes:examples:week4_two_segments [2017/09/13 00:42] – [Solution] tallpaul | 184_notes:examples:week4_two_segments [2021/05/25 14:28] (current) – schram45 | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | [[184_notes: | ||
+ | |||
===== Example: Two Segments of Charge ===== | ===== Example: Two Segments of Charge ===== | ||
Suppose we have two segments of uniformly distributed charge, one with total charge +Q, the other with −Q. The two segments each have length L, and lie crossed at their endpoints in the xy-plane. The segment with charge +Q lies along the y-axis, and the segment with charge −Q lies along the x-axis. See below for a diagram of the situation. Create an expression for the electric field →EP at a point P that is located at →rP=rxˆx+ryˆy. You don't have to evaluate integrals in the expression. | Suppose we have two segments of uniformly distributed charge, one with total charge +Q, the other with −Q. The two segments each have length L, and lie crossed at their endpoints in the xy-plane. The segment with charge +Q lies along the y-axis, and the segment with charge −Q lies along the x-axis. See below for a diagram of the situation. Create an expression for the electric field →EP at a point P that is located at →rP=rxˆx+ryˆy. You don't have to evaluate integrals in the expression. | ||
- | |||
- | {{ 184_notes: | ||
===Facts=== | ===Facts=== | ||
Line 8: | Line 8: | ||
* The other segment lies on the x-axis stretching from 0 to L, with charge −Q uniformly distributed. | * The other segment lies on the x-axis stretching from 0 to L, with charge −Q uniformly distributed. | ||
* The point P is at the arbitrary location →rP=rxˆx+ryˆy | * The point P is at the arbitrary location →rP=rxˆx+ryˆy | ||
+ | * The electric field due to a point charge is →E=14πϵ0qr3→r | ||
+ | * The electric field at P is the superposition of contributions from the two segments: →EP=→E+Q+→E−Q | ||
- | ===Lacking=== | + | ===Goal=== |
- | * →EP | + | * Find →EP. |
- | + | ||
- | ===Approximations & Assumptions=== | + | |
- | * The thicknesses of both segments are infinitesimally small, and we can approximate them as line segments. | + | |
- | * →EP is made up of contributions from the line segments and nothing else. | + | |
===Representations=== | ===Representations=== | ||
- | * We represent the situation using the diagram shown in the example statement. | + | {{ 184_notes:4_two_segments.png? |
- | * We represent the electric field due to a point charge as $$\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{q}{r^3}\vec{r}$$ | + | |
- | * We represent the electric field at P as the sum of contributions from the two segments: $$\vec{E}_P = \vec{E}_{+Q} +\vec{E}_{-Q}$$ | + | |
====Solution==== | ====Solution==== | ||
- | Because we know that electric fields add through superposition, | + | <WRAP TIP> |
+ | === Approximation === | ||
+ | We begin with an approximation, | ||
+ | * The thicknesses of both segments are infinitesimally small, and we can approximate them as line segments. | ||
+ | </ | ||
+ | |||
+ | This example is complicated enough that it's worthwhile to make a plan. | ||
+ | |||
+ | <WRAP TIP> | ||
+ | === Plan === | ||
+ | We will use integration to find the electric field from each segment, and then add the electric fields together using superposition. We'll go through the following steps. | ||
+ | * For the first segment, find the linear charge density, λ. | ||
+ | * Use λ to write an expression for dQ. | ||
+ | * Assign a variable location to the dQ piece, and then use that location to find the separation vector, →r. | ||
+ | * Write an expression for d→E. | ||
+ | * Figure out the bounds of the integral, and integrate to find electric field at P. | ||
+ | * Repeat the above steps for the other segment of charge. | ||
+ | * Add the two fields together to find the total electric field at P. | ||
+ | </ | ||
+ | |||
+ | Because we know that electric fields add through superposition, | ||
+ | |||
+ | <WRAP TIP> | ||
+ | ===Assumption=== | ||
+ | The charge is evenly distributed along each segment of charge. This allows each little piece of charge to have the same value along each line. | ||
+ | </ | ||
{{ 184_notes: | {{ 184_notes: | ||
Line 42: | Line 63: | ||
→E−Q=∫L014πϵ0−QdxL⋅|(rx−x)ˆx+ryˆy|3((rx−x)ˆx+ryˆy) | →E−Q=∫L014πϵ0−QdxL⋅|(rx−x)ˆx+ryˆy|3((rx−x)ˆx+ryˆy) | ||
- | Then the final electric field vector at P is the sum of the two contributions because of superpostion. (You can pull out the constants to simplify the integral if you want.) | + | Then the final electric field vector at P is the sum of the two contributions, because of vector superposition. (You can pull out the constants to simplify the integral if you want.) |
\begin{align*} | \begin{align*} | ||
\vec{E} &= \vec{E}_{+Q}+\vec{E}_{-Q} \\ | \vec{E} &= \vec{E}_{+Q}+\vec{E}_{-Q} \\ | ||
- | &= \int_0^L\frac{1}{4\pi\epsilon_0}\frac{Q\text{d}y}{L\cdot|\vec{r}_P-y\hat{y}|^3}(\vec{r}_P-y\hat{y}) + \int_0^L\frac{1}{4\pi\epsilon_0}\frac{-Q\text{d}x}{L\cdot|\vec{r}_P-x\hat{x}|^3}(\vec{r}_P-x\hat{x}) \\ | + | &= \int_0^L\frac{1}{4\pi\epsilon_0}\frac{Q\text{d}y}{L\cdot|r_x\hat{x}+(r_y-y)\hat{y}|^3}(r_x\hat{x}+(r_y-y)\hat{y}) + \int_0^L\frac{1}{4\pi\epsilon_0}\frac{-Q\text{d}x}{L\cdot|(r_x-x)\hat{x}+r_y\hat{y}|^3}((r_x-x)\hat{x}+r_y\hat{y}) \\ |
- | &= \frac{Q}{4\pi\epsilon_0L}\left(\int_0^L\frac{\text{d}y}{|\vec{r}_P-y\hat{y}|^3}(\vec{r}_P-y\hat{y}) - \int_0^L\frac{\text{d}x}{|\vec{r}_P-x\hat{x}|^3}(\vec{r}_P-x\hat{x})\right) \\ | + | &= \frac{Q}{4\pi\epsilon_0L}\left(\int_0^L\frac{\text{d}y}{|r_x\hat{x}+(r_y-y)\hat{y}|^3}(r_x\hat{x}+(r_y-y)\hat{y}) - \int_0^L\frac{\text{d}x}{|(r_x-x)\hat{x}+r_y\hat{y}|^3}((r_x-x)\hat{x}+r_y\hat{y})\right) \\ |
\end{align*} | \end{align*} | ||
At this point we have the integrals set up, which you could solve by hand if you so desire or plug them into Wolfram Alpha, Mathematica, | At this point we have the integrals set up, which you could solve by hand if you so desire or plug them into Wolfram Alpha, Mathematica, | ||