Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
184_notes:examples:week4_two_segments [2018/02/03 21:22] – [Solution] tallpaul | 184_notes:examples:week4_two_segments [2021/05/25 14:28] (current) – schram45 | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | [[184_notes: | ||
+ | |||
===== Example: Two Segments of Charge ===== | ===== Example: Two Segments of Charge ===== | ||
Suppose we have two segments of uniformly distributed charge, one with total charge +Q, the other with −Q. The two segments each have length L, and lie crossed at their endpoints in the xy-plane. The segment with charge +Q lies along the y-axis, and the segment with charge −Q lies along the x-axis. See below for a diagram of the situation. Create an expression for the electric field →EP at a point P that is located at →rP=rxˆx+ryˆy. You don't have to evaluate integrals in the expression. | Suppose we have two segments of uniformly distributed charge, one with total charge +Q, the other with −Q. The two segments each have length L, and lie crossed at their endpoints in the xy-plane. The segment with charge +Q lies along the y-axis, and the segment with charge −Q lies along the x-axis. See below for a diagram of the situation. Create an expression for the electric field →EP at a point P that is located at →rP=rxˆx+ryˆy. You don't have to evaluate integrals in the expression. | ||
Line 37: | Line 39: | ||
Because we know that electric fields add through superposition, | Because we know that electric fields add through superposition, | ||
+ | |||
+ | <WRAP TIP> | ||
+ | ===Assumption=== | ||
+ | The charge is evenly distributed along each segment of charge. This allows each little piece of charge to have the same value along each line. | ||
+ | </ | ||
{{ 184_notes: | {{ 184_notes: |