Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
184_notes:examples:week7_charging_capacitor [2017/10/06 00:28] – [Solution] tallpaul | 184_notes:examples:week7_charging_capacitor [2021/06/14 23:50] (current) – schram45 | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | [[184_notes: | ||
+ | |||
=====Looking at a Capacitor as it's Charging===== | =====Looking at a Capacitor as it's Charging===== | ||
- | Suppose you have a parallel plate capacitor that is disconnected from any power source and is discharged. At time t=0, the capacitor is connected to a battery. | + | Suppose you have a parallel plate capacitor that is disconnected from any power source and is discharged. At time t=0, the capacitor is connected to a battery. |
===Facts=== | ===Facts=== | ||
Line 8: | Line 10: | ||
===Lacking=== | ===Lacking=== | ||
- | * Graphs of I, Q, $\Delta V$$. | + | * Graphs of I, Q, ΔV. |
===Approximations & Assumptions=== | ===Approximations & Assumptions=== | ||
- | * The power source is connected correctly with respect to the capacitor and there are no other circuit elements (except for the wire). | + | * There are no other circuit elements (except for the wire): This simplifies down the model, having resistors or other capacitors will change the graphs for a charging or discharging capacitor. |
- | * The wire itself has a small resistance, just so we do not have infinite | + | * The wire itself has a small resistance: If the wires had no resistance then the current at t=0 would go to infinity by ohms law. This can be shown by solving ohms law for current in a circuit as the resistance approaches zero. |
- | * Practically speaking, the capacitor becomes "fully charged" | + | * Practically speaking, the capacitor becomes "fully charged" |
===Representations=== | ===Representations=== | ||
* We represent the setup below. The capacitor is pictured both disconnected and hooked up to the power source. | * We represent the setup below. The capacitor is pictured both disconnected and hooked up to the power source. | ||
- | {{ 184_notes: | + | [{{ 184_notes: |
====Solution==== | ====Solution==== | ||
- | Before the capacitor is connected, we know that it is discharged, so there is a net neutral charge both on the wire and on the parallel plates. At time t=0, when the power source is connected, it brings with it an electric field, which the charges on the wire and capacitor do not immediately oppose, since they have not had time to accumulate. At time t=0 (or maybe slightly after 0, once the electric field has propagated at the speed of light), the electric field in the wire may look like this: | + | Before the capacitor is connected, we know that it is discharged, so there is a net neutral charge both on the wire and on the parallel plates. At time t=0, when the power source is connected, it sets up an electric field in the wire (quasi-steady state), which the charges on the wire and capacitor do not immediately oppose, since there is initially no charge on the capacitor. At time t=0 (or maybe slightly after 0, once the electric field has propagated at the speed of light), the electric field in the wire may look like this: |
- | {{ 184_notes: | + | |
+ | [{{ 184_notes: | ||
+ | |||
+ | Slightly after time t=0, charges start to move (setting up a current) and the capacitor begins to charge. Due to the high electric field at the very beginning, the charge flows very quickly at first. Since current is simply the movement of charge, our current graph will start at a very high value. However, we expect the current to drop pretty quickly, since the large flow of charge means a quickly charging capacitor. The charges on the capacitor create an electric field that opposes the electric field in the wire and diminishes it, slowing down the flow of charge. A few moments after time t=0, the circuit and electric field may look like this: | ||
+ | |||
+ | [{{ 184_notes: | ||
+ | |||
+ | During this time, the current is smaller than at the beginning, but it is also decreasing at a slower rate, since the plates are not charging as quickly, which means the electric field is not diminishing as quickly. The current actually decays exponentially, | ||
+ | |||
+ | [{{ 184_notes: | ||
+ | |||
+ | Based on what we have argued so far, the graph of the current in the circuit should look something like this: | ||
+ | |||
+ | [{{ 184_notes: | ||
+ | |||
+ | Notice that we also used the charge of the capacitor in our argument for why the current drops off like it does. We basically argue that the charge graph will look like a flipped current graph: rapidly accumulating charge at first, and gradually slowing down in accumulation until equilibrium (" | ||
+ | |||
+ | [{{ 184_notes: | ||
+ | |||
+ | Lastly, we wish to produce a graph of the potential difference between the plates. We can pull from a [[184_projects: | ||
+ | Eplate=Qplate2ϵ0Aplate | ||
+ | Notice that we do not necessarily need to remember this equation -- the electric field of everything we have looked at so far has been directly proportional to the charge (not Q2 or Q5 or anything strange). | ||
+ | |||
+ | We also remember that potential difference across a constant electric field is just the electric field times the distance: | ||
+ | ΔV=E⋅Δd | ||
+ | Since the distance between the plates is unchanging and the electric field simply scales with Q, we can expect the voltage graph to have the same shape as the charge graph: | ||
+ | |||
+ | [{{ 184_notes: | ||
+ | |||
+ | That's it! We can even do one more check to be sure we are happy with our result. Notice the the capacitance of a capacitor can be represented as the charge on a plate (or something else, depending on the shape of the capacitor) divided by the potential difference between the plates (or whatever): C=QΔV | ||
- | Slightly after time $t=0$, | + | We know that capacitance is a constant, since it is an intrinsic property of the capacitor' |