184_notes:examples:week7_resistance_wire

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
184_notes:examples:week7_resistance_wire [2017/10/03 23:46] – created tallpaul184_notes:examples:week7_resistance_wire [2018/06/19 14:54] (current) curdemma
Line 1: Line 1:
-=====Example: Application of Node Rule===== +[[184_notes:resistivity|Return to resistors and conductivity]]
-Suppose you have the circuit below. Nodes are labeled for simplicity of discussion. you are given a few values: I1=8 A, I2=3 A, and I3=4 A. Determine all other currents in the circuit, using the [[184_notes:current#Current_in_Different_Parts_of_the_Wire|Current Node Rule]]. Draw the direction of the current as well.+
  
-{{ 184_notes:6_nodes.png?300 |Circuit with Nodes}}+=====Resistance of a Wire===== 
 +Suppose you have a wire whose resistance is 60 mΩThe wire has a length of 2 cm, and has a cross-sectional area of 1 mm2. What would be the resistance if you increase the length of the wire to 6 cm (keeping the area the same)? What would be the resistance if you increase the cross-sectional area to 3 mm2 (keeping the original length of wire)?
  
 ===Facts=== ===Facts===
-  * $I_1=\text{ A},I_2=\text{ A},andI_3=\text{ A}$. +  * The original wire has $\text{ cm},\text{ mm}^2,and60 \text{ m}\Omega$. 
-  * $I_1$$I_2,andI_3are directed as pictured.+  * The length could be increased to $L_{new} = 6 \text{ cm}$
 +  * The cross-sectional area could be increased to $A_{new} = 3 \text{ mm}^2$.
  
 ===Lacking=== ===Lacking===
-  * All other currents (including their directions).+  * Resistances of new wires.
  
 ===Approximations & Assumptions=== ===Approximations & Assumptions===
-  * The current is not changing (circuit is in steady state)+  * The conductivity of the wire does not change
-  * All current in the circuit arises from other currents in the circuit. +  * The wire's material is uniform.
-  * No resistance in the battery (approximating the battery as a mechanical battery)+
  
 ===Representations=== ===Representations===
-  * We represent the situation with diagram given. +  * We represent the resistance of a simple wire with$$R = \frac{L}{\sigma A}$$
-  * We represent the Node Rule as $I_{in}=I_{out}$.+
  
 ====Solution==== ====Solution====
-Let's start with node AIncoming current is I1and outgoing current is I2. How do we decide if $I_{A\rightarrow B}$ is incoming or outgoing? We need to bring it back to the Node Rule: $I_{in}=I_{out}.SinceI_1=8 \text{ A}andI_2=\textA},weneedI_{A\rightarrow B}$ to be outgoing to balance. To satisfy the Node Rule, we set +All we need here is our representation for the resistance of the wireIn the first change to the wire, we triple it's length ($2 \textcm} \rightarrow 6 \text{ cm}$). Our new resistance then is found by $$R_{new} = \frac{L_{new}}{\sigma A} = \frac{3L}{\sigma A} = 3R 180 \text{ m}\Omega$$
-$$I_{A\rightarrow B} = I_{out}-I_2 I_{in}-I_2 = I_1-I_2 = 5 \text{ A}$$+
  
-We do a similar analysis for node $B.IncomingcurrentisI_{A\rightarrow B}$, and outgoing current is $I_3$. Since $I_{A\rightarrow B}=\textA}andI_3=4 \textA},weneedI_{B\rightarrow D}$ to be outgoing to balance. To satisfy the Node Rule, we set +If instead, we made the other change, we would have tripled the cross-sectional area ($1 \textmm}^2 \rightarrow 3 \text{ mm}^2$). Our new resistance would then be $$R_{new} = \frac{L}{\sigma A_{new}= \frac{L}{\sigma 3 A} = \frac{1}{3}20 \text{ m}\Omega$$
-$$I_{B\rightarrow D} = I_{out}-I_3 = I_{in}-I_3 I_{A\rightarrow B}-I_3 = 1 \text{ A}$$+
  
-For node C, incoming current is I2 and I3There is no outgoing current defined yet! ICD must be outgoing to balance. To satisfy the Node Rulewe set +These answers should make sense physicallyThe longer the wirethe more material there is for the electrons to push throughso the resistance is higherThe bigger the area, the more electrons are able to flow through the wire in at given time so the resistance should be smaller.
-ICD=Iout=Iin=I2+I3=7 A +
- +
-Lastly, we look at node D. Incoming current is IBD and ICD. Since there is no outgoing current defined yetIDbattery must be outgoing to balanceTo satisfy the Node Rulewe set +
-IDbattery=Iout=Iin=IBD+IBD=8 A +
- +
-Notice that IDbattery=I1. This will always be the case for currents going in and out of the battery (approximating a few things that are usually safe to approximate, such as a steady current). In fact, we could have treated the battery as another node in this example. Notice also that if you incorrectly reason about the direction of current (incoming or outgoing), the calculation will give a negative number for the current. The Node Rule is self-correcting. A final diagram with directions is shown below. +
- +
-{{ 184_notes:6_nodes_with_arrows.png?300 |Circuit with Nodes}}+
  • 184_notes/examples/week7_resistance_wire.1507074370.txt.gz
  • Last modified: 2017/10/03 23:46
  • by tallpaul