184_notes:ind_graphs

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
184_notes:ind_graphs [2022/11/26 14:50] valen176184_notes:ind_graphs [2022/12/07 14:43] (current) valen176
Line 1: Line 1:
-In these notes, we will examine a few examples of changing magnetic fluxes and associated induced voltages. First let's consider when ΦB rises and falls linearly with the same magnitude of slope:+===== Induction Graphs ===== 
 + 
 +In these notes, we will examine a few examples of changing magnetic fluxes and associated induced voltages. Recall from the previous notes that these are related by **Faraday's Law** which says: 
 + 
 +Vind=dΦbdt 
 + 
 +This is saying that the induced current is the **negative slope** of the magnetic flux. In other words, if the magnetic flux is increasing, then Vind will be negative, if the magnetic flux is decreasing, then Vind will be positive, and if the magnetic flux is constant, then Vind=0.  
 + 
 +First let's consider when an example where ΦB rises and falls linearly with the same magnitude of slope:
  
  
 [{{184_notes:examples:ind_graph1.png?800|  }}] [{{184_notes:examples:ind_graph1.png?800|  }}]
-From t=0 to t=5, ΦB has a positive, constant slope, so  Vind will be constant and **negative**. Conversely, from t=5 to t=10, ΦB has a positive, constant slope, so Vind will be constant and **positive**. 
  
-Specifically, in this case $\Phi_b(t)$ is defined as:+From t=0 to t=5, ΦB(t) has a constant positive slope, so  Vind will be constant and **negative**. Conversely, from t=5 to t=10, ΦB(t) has a constant negative slope, so Vind will be constant and **positive**. 
 + 
 +Specifically, in this case $\Phi_B(t)$ is defined as:
 $$ $$
 \Phi_B(t)= \Phi_B(t)=
Line 21: Line 30:
     \end{cases}     \end{cases}
 $$ $$
-Which finally means that Vind is:+Now we can multiply by 1 because of the negative sign in Faraday's law to find Vind:
 $$ $$
 V_{ind}= V_{ind}=
Line 31: Line 40:
  
  
 +Next, let's consider an example with a few different slopes:
 [{{184_notes:examples:ind_graph2.png?800|  }}] [{{184_notes:examples:ind_graph2.png?800|  }}]
  
-More Words+We can see that from t=0 to t=10, ΦB(t) has a positive slope, so Vind is negative on that time interval. However, ΦB(t) is steeper from t=5 to t=10, so Vind is **more negative** on that time interval than from t=0 to t=5. From t=10 to t=15, ΦB(t) has a constant and negative slope, so Vind is constant and positive on that time interval. Specifically we have that: 
 + 
 + 
 +$$ 
 +\Phi_B(t)= 
 +    \begin{cases} 
 +        2t & \text{if } 0<t<5\\ 
 +        5t -15 & \text{if } 5<t<10\\ 
 +        -10t + 135 & \text{if } 10<t<15 
 +    \end{cases} 
 +$$ 
 +Which means dΦBdt is: 
 +$$ 
 +\frac{d \Phi_B}{dt}= 
 +    \begin{cases} 
 +        2 & \text{if } 0<t<5\\ 
 +        5 & \text{if } 5<t<10\\ 
 +        -10 & \text{if } 10<t<15 
 +    \end{cases} 
 +$$ 
 +Which finally means that Vind is: 
 +$$ 
 +V_{ind}= 
 +    \begin{cases} 
 +        -2 & \text{if } 0<t<5\\ 
 +        -5 & \text{if } 5<t<10\\ 
 +        10 & \text{if } 10<t<15 
 +    \end{cases} 
 +$$ 
 + 
 +Finally, let's look at an example with a non-linear ΦB(t):
  
 [{{184_notes:examples:ind_graph3.png?800|  }}] [{{184_notes:examples:ind_graph3.png?800|  }}]
  
-Some final words+ΦB(t) looks like a quadratic centered about t = 2. We can see that while ΦB(t) is decreasing (0<t<2), Vind is positive, and while ΦB(t) is increasing (2<t<8), Vind is negative.  
 + 
 +Specifically, in this case we have: 
 + 
 +ΦB(t)=(t2)2 
 + 
 +Taking a first derivative with respect to time yields: 
 + 
 +dΦBdt=2(t2) 
 + 
 +Multiplying by 1 to find Vind gives: 
 + 
 +Vind=2(t2)
  • 184_notes/ind_graphs.1669474215.txt.gz
  • Last modified: 2022/11/26 14:50
  • by valen176