=====Level Up Answers===== ====Level 0==== Circuit A: $$R_{eq}=R_1+R_2+R_3= 9 Ω$$ $$V_3>V_2>V_1$$ $$I_1=I_2=I_3$$ Circuit B: $$C_{eq}=(\frac{1}{C_1}+ \frac{1}{C_2}+ \frac{1}{C_3})^{-1}= 2.3 mF$$ $$Q_{1}=Q_{2}=Q_{3}$$ $$V_1>V_2>V_3$$ Circuit C: $$C_{eq}=C_1+C_2+C_3 = 21 mF$$ $$V_{1}=V_{2}=V_{3}$$ $$Q_3>Q_2>Q_1$$ Circuit D: $$R_{eq}=(\frac{1}{R_1}+ \frac{1}{R_2}+ \frac{1}{R_3})^{-1}= 0.92 Ω$$ $$V_{1}=V_{2}=V_{3}$$ $$I_1>I_2>I_3$$ ====Level 1==== Circuit A: $R_{eq}= 350 Ω$ Circuit B: $R_{eq}= 400 Ω$ Circuit C: $C_{eq}=235 μF$ Circuit D: $C_{eq}=176.25 μF$ ====Level 2==== ===Circuit A:=== Results: {{:course_planning_studio_em:week8:2a.png?400|}} Power Ranking: $P_1=P_2>P_1=P_3=P_4$ ===Circuit B:=== Results: {{:course_planning_studio_em:week8:2b.png?400|}} Power Ranking: $P_1>P_5>P_2>P_3>P_4$ ===Circuit C=== Results: {{:course_planning_studio_em:week8:2c.png?400|}} Power Ranking: $P_5>P_3>P_1=P_2>P_4$ ===Circuit D=== Results: {{:course_planning_studio_em:week8:2d.png?400|}} Power Ranking: $P_1>P_4>P_5>P_3>P_2$ ====Level 3==== ===Circuit A=== Results: {{:course_planning_studio_em:week8:3a.png?400|}} ===Circuit B=== Results: {{:course_planning_studio_em:week8:3b.png?400|}} ===Circuit C=== Results: {{:course_planning_studio_em:week8:3c.png?400|}} ===Circuit D=== Results: {{:course_planning_studio_em:week8:3d.png?400|}} ====Level 4==== ===Circuit A=== {{:course_planning_studio_em:week8:level4circuitacolored.png?600|}} Given: $V_1= 9V$, $V_2= 6V$, $R=100 Ω$ Simplify Circuit: * $R_1$ and $R_2$ in series, $R_1+R_2=200 Ω$ Node Rule: * $I_1+I_2=I_3$ Loop Rule: * Loop A: $V_1-I_1R_{12}-I_3R_3=0$ * Loop B: $I_3R_3-I_2R_4-V_2=0$ * Loop C: $V_1-I_1R_{12}-I_2R_4-V_2=0$ Solution: $I_1=0.024A$, $I_2=0.018A$, $I_3=0.042A$ *note can use wolfram/online/calc to evaluate I from loop AND node rule equations ===Circuit B=== {{:course_planning_studio_em:week8:level4circuitbcolored.png?600|}} Given: $V_1= 9V$, $V_2= 6V$, $R=100 Ω$ Simplify Circuit: * $R_1$ || $R_2$, $R_{12}=50 Ω$ Node Rule: * $I_1=I_2+I_3$ Loop Rule: * Loop A: $V_1-I_1R_{12}-I_3R_3=0$ * Loop B: $ V_2 -I_2R_4 +I_3R_3=0$ * Loop C: $V_1-I_1R_{12-V_2}-I_2R_4=0$ Solution: $I_1=0.12 A$, $I_2=0.09A$, $I_3=0.03A$ ===Circuit C=== {{:course_planning_studio_em:week8:level4circuitccolored.png?600|}} Given: $V_1= 9V, V_2= 6V, R=100 Ω$ Simplify Circuit: * $R_2$ and $R_3$ in series, $R_2+R_3=200 Ω$ * $R_4$ || $R_5$, $R_{12}=50 Ω$ Node Rule: * $I_1=I_2+I_3$ Loop Rule: * Loop A: $V_1-I_1R_1+V_2-I_1R_{45}=0$ * Loop B: $ -V_2-I_3R_{23}=0$ * Loop C: $V_1-I_1R_1-I_3R_{23}-I_1R_{45}=0$ Solution: $I_1=0.06A$, $I_2=0.09A$, $I_3=-0.03A$ ===Circuit D=== {{:course_planning_studio_em:week8:level4circuitdcolored.png?600|}} Given: $V_1= 9V, V_2= 6V, R=100 Ω$ Simplify Circuit: * $R_2$ and $R_3$ in series, $R_2+R_3=200 Ω$ * $R_1$||$R_{23}$, $R_{12}=66.667 Ω$ Node Rule: * $I_1=I_2+I_3$ Loop Rule: * Loop A: $V_1-I_1R_{123}- 0$ * Loop B: $ I_2R_{123}-V_2-I_3R_4=0$ * Loop C: $V_1-V_2-I_3R_4=0$ Solution: $I_1=0.165A$, $I_2=0.135A$, $I_3=0.03A$ ====Level Bonus==== a) Initially there is current in all branches of the circuit (uncharged capacitors act like wires - current can pass through). b) $I_i = 0.00436 A$ c) {{ 184_notes:charginggraphs.png?400 }} d) Current goes through all branches without a capacitor (charge capacitors act like a break in the circuit - no current) {{ 184_notes:chargedcurrent.png?350 }} e) $I_f = 0.0036 A$ f) If the switch is opened, the capacitors would discharge through the resistors below. {{ 184_notes:dischargecurrentpath.png?350 }}