Example: Calculating the momentum of a fast-moving object

An electron is observed to be moving with a velocity of $\langle -2.05\times10^7, 6.02\times10^7, 0\rangle\dfrac{m}{s}$. Determine the momentum of this electron.

Setup

You need to compute the momentum of this electron using the information provided and any information that you can collect or assume.

Facts

Lacking

Approximations & Assumptions

Representations

Solution

First, we compute the speed of the electron.

$$|\vec{v}_e| = \sqrt{v_x^2+v_y^2+v_z^2} = \sqrt{(-2.05\times10^7 \dfrac{m}{s})^2+(6.02\times10^7 \dfrac{m}{s})^2+(0)^2} = 6.36 \times 10^7 \dfrac{m}{s}$$

Next, we compute the gamma factor.

$$\gamma = \dfrac{1}{\sqrt{1-\left(\dfrac{|\vec{v}|}{c}\right)^2}} = \dfrac{1}{\sqrt{1-\left(\dfrac{6.36 \times 10^7 \dfrac{m}{s}}{3.00 \times 10^8 \dfrac{m}{s}}\right)^2}} = \dfrac{1}{\sqrt{1-(0.212)^2}}=1.02$$

Finally, we compute the momentum vector.

$$\vec{p}_e = \gamma m_e \vec{v}_e = (1.02) (9.11\times10^{-31} kg) \langle -2.05\times10^7, 6.02\times10^7, 0\rangle\dfrac{m}{s} = \langle -1.91 \times 10^{-23}, 5.61\times10^{-23},0\rangle\dfrac{kg\:m}{s}$$