Processing math: 0%

Table of Contents

Level Up Answers

Level 0

Circuit A: R_{eq}=R_1+R_2+R_3= 9 Ω V_3>V_2>V_1 I_1=I_2=I_3

Circuit B: C_{eq}=(\frac{1}{C_1}+ \frac{1}{C_2}+ \frac{1}{C_3})^{-1}= 2.3 mF Q_{1}=Q_{2}=Q_{3} V_1>V_2>V_3

Circuit C: C_{eq}=C_1+C_2+C_3 = 21 mF V_{1}=V_{2}=V_{3} Q_3>Q_2>Q_1

Circuit D: R_{eq}=(\frac{1}{R_1}+ \frac{1}{R_2}+ \frac{1}{R_3})^{-1}= 0.92 Ω V_{1}=V_{2}=V_{3} I_1>I_2>I_3

Level 1

Circuit A: R_{eq}= 350 Ω

Circuit B: R_{eq}= 400 Ω

Circuit C: C_{eq}=235 μF

Circuit D: C_{eq}=176.25 μF

Level 2

Circuit A:

Results:

Power Ranking: P_1=P_2>P_1=P_3=P_4

Circuit B:

Results:

Power Ranking: P_1>P_5>P_2>P_3>P_4

Circuit C

Results:

Power Ranking: P_5>P_3>P_1=P_2>P_4

Circuit D

Results:

Power Ranking: P_1>P_4>P_5>P_3>P_2

Level 3

Circuit A

Results:

Circuit B

Results:

Circuit C

Results:

Circuit D

Results:

Level 4

Circuit A

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

Node Rule:

Loop Rule:

Solution:

I_1=0.024A, I_2=0.018A, I_3=0.042A

*note can use wolfram/online/calc to evaluate I from loop AND node rule equations

Circuit B

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

Node Rule:

Loop Rule:

Solution:

I_1=0.12 A, I_2=0.09A, I_3=0.03A

Circuit C

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

Node Rule:

Loop Rule:

Solution:

I_1=0.06A, I_2=0.09A, I_3=-0.03A

Circuit D

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

Node Rule:

Loop Rule:

Solution:

I_1=0.165A, I_2=0.135A, I_3=0.03A

Level Bonus

a) Initially there is current in all branches of the circuit (uncharged capacitors act like wires - current can pass through).

b) I_i = 0.00436 A

c)

d) Current goes through all branches without a capacitor (charge capacitors act like a break in the circuit - no current)

e) I_f = 0.0036 A

f) If the switch is opened, the capacitors would discharge through the resistors below.