Circuit A: R_{eq}=R_1+R_2+R_3= 9 Ω V_3>V_2>V_1 I_1=I_2=I_3
Circuit B: C_{eq}=(\frac{1}{C_1}+ \frac{1}{C_2}+ \frac{1}{C_3})^{-1}= 2.3 mF Q_{1}=Q_{2}=Q_{3} V_1>V_2>V_3
Circuit C: C_{eq}=C_1+C_2+C_3 = 21 mF V_{1}=V_{2}=V_{3} Q_3>Q_2>Q_1
Circuit D: R_{eq}=(\frac{1}{R_1}+ \frac{1}{R_2}+ \frac{1}{R_3})^{-1}= 0.92 Ω V_{1}=V_{2}=V_{3} I_1>I_2>I_3
Circuit A: R_{eq}= 350 Ω
Circuit B: R_{eq}= 400 Ω
Circuit C: C_{eq}=235 μF
Circuit D: C_{eq}=176.25 μF
Given:
V_1= 9V, V_2= 6V, R=100 Ω
Simplify Circuit:
Node Rule:
Loop Rule:
Solution:
I_1=0.024A, I_2=0.018A, I_3=0.042A
*note can use wolfram/online/calc to evaluate I from loop AND node rule equations
Given:
V_1= 9V, V_2= 6V, R=100 Ω
Simplify Circuit:
Node Rule:
Loop Rule:
Solution:
I_1=0.12 A, I_2=0.09A, I_3=0.03A
Given:
V_1= 9V, V_2= 6V, R=100 Ω
Simplify Circuit:
Node Rule:
Loop Rule:
Solution:
I_1=0.06A, I_2=0.09A, I_3=-0.03A
Given:
V_1= 9V, V_2= 6V, R=100 Ω
Simplify Circuit:
Node Rule:
Loop Rule:
Solution:
I_1=0.165A, I_2=0.135A, I_3=0.03A
a) Initially there is current in all branches of the circuit (uncharged capacitors act like wires - current can pass through).
b) I_i = 0.00436 A
d) Current goes through all branches without a capacitor (charge capacitors act like a break in the circuit - no current)
e) I_f = 0.0036 A
f) If the switch is opened, the capacitors would discharge through the resistors below.