184_notes:examples:week10_current_ring

This is an old revision of the document!


Suppose you have a circular ring, in which which there is a current I. The radius of the ring is R. The current produces a magnetic field. What is the magnetic field at the center of the ring?

Facts

  • The current in the ring is I.
  • The radius of the ring is R.

Lacking

  • B

Approximations & Assumptions

  • If we orient the ring in the xy-plane and look down, the current flows in the counterclockwise direction.
  • The current is steady.
  • There are no other contributions to the magnetic field.

Representations

  • We represent the Biot-Savart Law for magnetic field from a current as

B=μ04πIdl×rr3

  • We represent the situation below. We put the center of the ring at the origin. We choose cylindrical coordinates because we will be integrating over the length of the ring, and being able to represent its radius as constant will simplify calculations.

Ring of Current

Below, we show a diagram with a lot of pieces of the Biot-Savart Law unpacked. We show an example dl, and a separation vector r. Notice that dl is directed along the segment, in the same direction as the current. The separation vector r points as always from source to observation.

Ring of Current, Broken Down

Let's start breaking down some of the components of the Biot-Savart Law we listed in our representations. We can say for now that dl is directed in the ˆϕ direction. The length of our dl is Rdϕ which comes from the arc length formula. We can therefore write dl=Rdϕˆϕ

We also represent the separation vector using a cylindrical unit vector, too: r=robsrsource=0Rˆs=Rˆs

Now, we combined the two vectors in their cross product: dl×r=(Rdϕˆϕ)×(Rˆs)=R2dϕ(ˆϕ׈s)=R2dϕˆz

Notice that even though the direction of ˆϕ and ˆs depend on the angle ϕ at which the vectors exist, their cross product, ˆz, does not depend at all on ϕ. This will greatly simplify our integration later.

In order to set up the integration, we also need the magnitude of the separation vector, which conveniently is just R – you should be able to convince yourself of this. Lastly, we need the bounds on our integration. We will be integrating over dϕ. We want to account for every piece of the ring, so it will sufficient to set our integration from ϕ=0 to ϕ=2π.

2π0

  • 184_notes/examples/week10_current_ring.1509490388.txt.gz
  • Last modified: 2017/10/31 22:53
  • by tallpaul