184_notes:examples:week8_cap_parallel

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
184_notes:examples:week8_cap_parallel [2017/10/17 00:23] dmcpadden184_notes:examples:week8_cap_parallel [2018/06/26 14:45] (current) curdemma
Line 1: Line 1:
 +[[184_notes:c_parallel|Return to Capacitors in Parallel notes]]
 +
 ===== Connecting Already-Charged Capacitors ===== ===== Connecting Already-Charged Capacitors =====
 Suppose you have the following setup of already-charged capacitors. The positive plates are all on the top half of the circuit. Capacitors are labeled 1 through 3 for convenience of reference, and the sign of the charge on the plates is indicated. You know that $Q_1 = Q_2 = Q_3 = 1 \text{ mC}$, and $\Delta V_1 = \Delta V_2 = \Delta V_3 = 20 \text{ V}$. Part 1: What is the equivalent capacitance (if the switches are closed) from Node A to Node B? What happens after the switches are closed? Part 2: What if Capacitor 2 were flipped? Suppose you have the following setup of already-charged capacitors. The positive plates are all on the top half of the circuit. Capacitors are labeled 1 through 3 for convenience of reference, and the sign of the charge on the plates is indicated. You know that $Q_1 = Q_2 = Q_3 = 1 \text{ mC}$, and $\Delta V_1 = \Delta V_2 = \Delta V_3 = 20 \text{ V}$. Part 1: What is the equivalent capacitance (if the switches are closed) from Node A to Node B? What happens after the switches are closed? Part 2: What if Capacitor 2 were flipped?
  
-{{ 184_notes:8_cap_parallel.png?500 |Circuit with Capacitors in Parallel}}+[{{ 184_notes:8_cap_parallel.png?500 |Circuit with Capacitors in Parallel}}]
  
 ===Facts=== ===Facts===
Line 35: Line 37:
  
 ===Part 2=== ===Part 2===
-{{  184_notes:8_cap_parallel_flipped.png?500|Circuit with Capacitors in Parallel}}+[{{  184_notes:8_cap_parallel_flipped.png?500|Circuit with Capacitors in Parallel}}]
 In the case that Capacitor 2 is flipped, we have the setup shown to the right. When we check the potential differences in the different capacitors, we notice that the voltage across Capacitor 2 is the opposite as the voltage across the other capacitors. If we travel from Node B to Node A, we could travel through Capacitor 2 and go through $\Delta V_2=-12 \text{ V}$, or through one of the other capacitors and go through $\Delta V_{1,3}=+12 \text{ V}$. These are different, but that can't be! There must be some potential difference in the wire that we are not accounting for. This potential difference will cause charge to flow. The only question is how. In the case that Capacitor 2 is flipped, we have the setup shown to the right. When we check the potential differences in the different capacitors, we notice that the voltage across Capacitor 2 is the opposite as the voltage across the other capacitors. If we travel from Node B to Node A, we could travel through Capacitor 2 and go through $\Delta V_2=-12 \text{ V}$, or through one of the other capacitors and go through $\Delta V_{1,3}=+12 \text{ V}$. These are different, but that can't be! There must be some potential difference in the wire that we are not accounting for. This potential difference will cause charge to flow. The only question is how.
  
 If we consider that charge cannot flow across a capacitor, we know that charges can only move through the wires (i.e., top plate to top plate or bottom plate to bottom plate). Initially, the total charge on the top plates is $1 \text{ mC}$ since there is $1 \text{ mC } - 1 \text{ mC }+1 \text{ mC }$ (and the total charge on the bottom plates is then $-1 \text{ mC}$). In order to reach a steady state, since each capacitor is the same, the charge should spread out evenly among the capacitors because they are connected by conductors. So each capacitor would have a charge of $0.33 \text{ mC}$ after returning to equilibrium. This way, charge is conserved on the top and bottom, and each capacitor is charged to the same amount (though this happens because the capacitors all have the same capacitance, not because they are in parallel). The steady state should look the original diagram given, just with less (a third, to be exact) of the charge built up on the plates. If we consider that charge cannot flow across a capacitor, we know that charges can only move through the wires (i.e., top plate to top plate or bottom plate to bottom plate). Initially, the total charge on the top plates is $1 \text{ mC}$ since there is $1 \text{ mC } - 1 \text{ mC }+1 \text{ mC }$ (and the total charge on the bottom plates is then $-1 \text{ mC}$). In order to reach a steady state, since each capacitor is the same, the charge should spread out evenly among the capacitors because they are connected by conductors. So each capacitor would have a charge of $0.33 \text{ mC}$ after returning to equilibrium. This way, charge is conserved on the top and bottom, and each capacitor is charged to the same amount (though this happens because the capacitors all have the same capacitance, not because they are in parallel). The steady state should look the original diagram given, just with less (a third, to be exact) of the charge built up on the plates.
  • 184_notes/examples/week8_cap_parallel.1508199839.txt.gz
  • Last modified: 2017/10/17 00:23
  • by dmcpadden