course_planning:todo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
course_planning:todo [2014/11/16 08:10] pwirvingcourse_planning:todo [2022/12/06 21:28] (current) pwirving
Line 1: Line 1:
-====== To Do ======+{{:course_planning:projects:boar_tiger_defense2.png?|}}
  
-==== 09/07/2014 ====+You have been sent to a remote outpost in Icy Cape, Alaska. While at the outpost, strange things start happening and you are being constantly attacked by an animal that seems to be a weird tiger/boar boar combination. Your base is located at the shore of a large frozen lake across from which is the boar tiger breeding ground. The outpost was formerly a foundry for metal working; several large rectangular blocks (5 $\mathrm{m}$ wide; 1 $\mathrm{m}$ high; 1 $\mathrm{m}$ deep) of steel rest on the frozen lake. The steel made at this foundry has a density of 7850 $\mathrm{kg/m^3}$.
  
-  * <del>Start to do list</del> +Roving in packs of precisely 101, boar tiger hide cannot be penetrated by conventional weaponry (i.e., bullets and knives). But there are some abandoned cannons you could use to defend the outpost. The cannons were engineered to fire .3 $\mathrm{m}$ diameter cannonballs at a speed of 1600 $\mathrm{m/s}$. These cannonballs are made of clay with a very thin steel shell ($m = 200 kg$). These were found to be laegely ineffective against the packs of boar tigers. Howevera member of your team observed that boar tigers were afraid of objects with swinging or sweeping motions.
-  * <del>Italicize definitions</del> +
-  * Make sure students know to ignore the first couple of lines of programming in python files +
-  * Momentum Notes +
-    * <del>Link when say vectors back to notes on vectors</del> +
-    * <del>Link to page with examples of momentum for slow moving and fast moving objects solved</del> +
-  * The Momentum Principle Notes +
-    * <del>System and surroundings expanded on with diagram that fits into narrative and fan cart video</del> +
-    * <del>Record new fan cart video</del> +
-    * <del>Link to impulse example which is connected to the real world</del> +
-  * Constant Force Motion +
-    * <del>Link back to vectorsnet force and momentum principle when mentioned in the body of the text</del> +
-     +
-==== 10/07/2014 ====+
  
-  * Write Examples +They asked you to design a defense system that can defend against packs of boar tigers using the cannons (already in placeand the large, rectangular steel blocks. In his mind, it could be possible to have the steel blocks slide and rotate along the ice, sweeping up the attacking boar tigers along the way.
-    * <del>[[:183_notes:examples:momentumFast|Calculating the momentum of a fast-moving object ($v \sim c$)]]</del> +
-    * <del>[[:183_notes:examples:momentumSlow|Calculating the momentum of a slow-moving object ($v \ll c$)]]</del> +
-    * <del>[[:183_notes:examples:netForce|Calculating the net force]]</del> +
-    * <del>[[:183_notes:examples:impulse|Calculating the change in momentum]]</del> +
-    * <del>[[:183_notes:examples:vectorDecomposition|Determining vector components]]</del> +
-    * <del>[[:183_notes:examples:unitVector|Calculating a unit vector]]</del> +
-    * <del>[[:183_notes:examples:averageVelCompare|Comparing the two ways of determining average velocity]]</del> +
-    * <del>[[:183_notes:examples:positionPredict|Predicting the location of a object undergoing constant velocity motion]]</del> +
-    * <del>[[:183_notes:examples:relativeMotion|Calculating the velocity of a plane using relative measurements]]</del> +
-    * <del>[[:183_notes:examples:finalLocCF|Predicting the location of an object undergoing constant force motion]]</del> +
-    * <del>[[:183_notes:examples:finalP|Calculating the final momentum & velocity using the Momentum Principle]]</del> +
-    * [[:183_notes:examples:iterativePredict|Predicting the final location of an object moving under a non-constant force]] +
-  * Write Notes +
-    * <del>[[:183_notes:acceleration|Acceleration & The Change in Momentum]]</del> +
-      * <del>Finish the bit to motivate why acceleration?</del> +
-      * <wrap todo>Does this need an example?</wrap> +
-    * <del>[[:183_notes:springMotion|Non-constant Force: Springs]]</del> +
-    * <del>[[:183_notes:gravitation|Non-constant Force: Gravitation]]</del> +
-  * <del>Determine where examples are needed for current note set</del> +
-  * <del>Determine where lecture videos are needed for current note set</del> +
-  * <del>Develop tutor notes for [[183_projects:project_2|Project 2]]</del> +
-  * <del>In momentum principle notes link forward to diagram in non constant force spring notes about the importance of time periods</del> +
-==== 11/07/2014 ====+
  
-  * We need to start developing assessments (exams) +To determine if such a defense mechanism is feasible, <wrap caution>DrYou need to determine how the steel block will move and with what speed it could be expected to strike boar tigers.
-  * <del>Add clicker questions/notes for forces</del> +
-  * We need 4 new videos +
-    * [[temp:prelec:momentum|1 pre lecture video - define momentum and discuss momentum principle]] <wrap todo(Put in graph bit) </wrap> +
-    * [[temp:prelec:CF-g|1 pre lecture video - talk about the concept of gravitational force and how it relates to projectile motion - 3dimensions]] +
-    * [[temp:prelec:CF|1 pre lecture video - constant force motion]] <wrap todo> (Put in graph bit) </wrap> +
-    * [[temp:prelec:springs|1 pre lecture video - discuss difference between systems undergoing non constant and constant forces]] +
-    * [[temp:prelec:newtoniangravitation|1 pre lecture video - break down newtonian gravitation especially its reciprocal nature.]] +
-    * 1 example video - applying the momentum principle +
-    * 1 example video - demonstrating the iterative prediction of motion +
- +
-  * Fan Cart Videos to keep: +
-    * 1 - const v (sdjsaxLfevQ) +
-    * 2 - const F (MAa7sYKa5GA) +
-    * 8 - F opp v to start (3Bi0uvqBL08) +
-    * 12 - const v; with accelerometer (LxxwPZ5Ocis) +
-    * 14 - const F; with accelerometer (HSZV2vBALtY) +
-    * 19 - F pop v to start; with accelerometer (-b03kUELJQc) +
-==== 14/07/2014 ==== +
- +
-  * For which problems, should we work the examples? Or should we generate new worked examples? Here's a sample. The audio is really low for some reason (and it's only 360p), but it uses the iPad, so it's quick. I can do more testing of the setup if we need to. +
- +
-{{ youtube>D1AsJtVisYs?large }} +
- +
-  * Here's a better version, which I exported in a different way. I can record and export them after a higher res, so that YouTube will recognize them as 720p. The audio still sucks, but I'm not sure why. +
- +
-{{ youtube>gqj4TrlZbAE?large }} +
- +
- +
- +
-==== 16/07/2014 ===== +
- +
-  * Screencast for modeling fan cart VPython +
-  * Edits to VPython code (scaling, etc.) +
-    * Tutor notes for VPython Project 2 (Draw the motion maps/Compare to yesterday; does mass matter? - Test with code) +
-  * Edits to Project 2C +
-  * Graphs for positon and force (spring system) +
- +
-=== Graphs for Project 3 === +
- +
-{{url>https://plot.ly/~PERLatMSU/7/640/480 640px,480px | Position vs time}} +
- +
-{{url>https://plot.ly/~PERLatMSU/8/640/480 640px,480px | Force vs time}} +
- +
-=== Lecture Videos Uploaded === +
- +
-  * Lecture 3 - Momentum and Momentum Principle (mJlM82R35Zg) +
-  * Lecture 4 - force versus Time (RXJ0XlcPBRg) +
-  * Lecture 5 - constant force motion (FK5vyrOamhk) +
-  * Lecture 6 - local gravitational force (0O5phTxadJc) +
-  * Lecture 7 - predicting motion iteratively (DjOttBEMX74) +
-  * Lecture 8 - Newtonian Gravitation (Pju9B5fyUEU) +
- +
-=== Modeling === +
-{{youtube>dkTncoPqo5Y}} +
- +
-=== Examples === +
- +
-  * [[:183_notes:examples:Holding Block Against a Wall]] +
-  * [[:183_notes:examples:Sliding to a Stop]] +
-  * [[:183_notes:examples:Two students colliding]] +
-  * [[:183_notes:examples:Deer Slug Example]] +
-  * [[:183_notes:examples:Walking in a Boat]] +
-  * [[:183_notes:examples:MIT Water Balloon Fight]] +
-  * [[:183_notes:examples:The Jumper]] +
-  * [[:183_notes:examples:Sledding]] +
-  * [[:183_notes:examples:Energy in a Spring-Mass System]] +
-  * [[:183_notes:examples:A Rebounding Block]] +
-  * [[:183_notes:examples:Thermal Equilibrium]] +
-  * [[:183_notes:examples:The Moment of Inertia of a Diatomic Molecule]] +
-  * [[:183_notes:examples:The Moment of Inertia of a Bicycle Wheel]] +
-  * [[:183_notes:examples:Rotational Kinetic Energy and Work]] +
-  * [[:183_notes:examples:A Rod Rotating Not Around Its Center]] +
-  * [[:183_notes:examples:A Yo-Yo]] +
-  * [[:183_notes:examples:Elastic Collision of Two Identical Carts]] +
-  * [[:183_notes:examples:Maximally Inelastic Collision of Two Identical Carts]] +
-  * [[:183_notes:examples:A Ping-Pong Ball Hits a Stationary Bowling Ball Head-on]] +
-  * [[:183_notes:examples:Angular Momentum of Halley's Comet]] +
-  * [[:183_notes:examples:Earth's Translational Angular Momentum]] +
-  * [[:183_notes:examples:Angular Momentum of Halley's Comet]] +
-  * [[:183_notes:examples:Rotational Angular  Momentum of a Bicycle Wheel]] +
-  * [[:183_notes:examples:A Meter Stick on the Ice]] +
-  +
- +
-=== Next Year === +
- +
-Rearrange the homework next year so that when we rearrange the questions (getting rid of the computational spring part and moving gravitational to being a two part) +
- +
-=== Supplementary Materials === +
- +
-  * [[:Supplementary Materials:Boar Tigers]]+
  • course_planning/todo.1416125429.txt.gz
  • Last modified: 2014/11/16 08:10
  • by pwirving