Ch1 HW1 (1360577)

Description

Vectors

Instructions
Reading: Matter \& Interactions 3rd Edition Sec. 1.5 Because your final numerica answer must be within 1% of the correct answer, you need to keep more than 3 significant figures in your intermediate calculations.

1. $0 / 0.5$ points

Which of the following are vectors? (Select all that apply.)$\langle 0,2.3,-1\rangle$
-3×10^{-6}D $5 x<33,1.04,-9.5>$$0\langle 0.7,0.7,-0.7\rangle$
2.
0/0.5 points

Which of the following are vectors? (Select all that apply.)
\square(2) $10 \vec{r}$$\vec{r} / 2$$\rho\left\langle r_{x}, r_{y}, r_{z}\right\rangle$
3. $0 / 1$ points

Which of the arrows shown in the diagram represents the vector $\langle 10,-1,0\rangle$?
---Select--- \dagger a
4. $0 / 1$ points

Read these questions carefully. They are not the same. (Select all that apply for each.)

(a) Which of the vectors in the diagram have magnitudes equal to the magnitude of \vec{a} ?
\square(D \vec{c}Q $\vec{e}$$\vec{g}$
(b) Which of the vectors in the diagram are equal to \vec{a} ?\vec{b}
\square
$\vec{d}$$\vec{e}$$\vec{f}$
5. $0 / 2$ points

MI3 1.5.X.062.alt01. [1249661]
In the diagram below three vectors are represented by arrows in the xy plane. Each division represents 1 meter.

(a) What are the components of the vector \vec{c} ?
$\vec{c}=$

(b) What is the magnitude of \vec{c} ?
$|\vec{c}|=\square \square 10.8 \mathrm{~m}$
6.

0/2 points
If $\vec{a}=\langle 3,-5,5\rangle$, then what is $7 * \vec{a}$?
$7 * \vec{a}=<\square, \square-35, \square>35>$ How does the magnitude of $7 * \vec{a}$ compare to the magnitude of \vec{a} ?

The magnitude of $7 * \vec{a}$ is a factor of 7 greater than the magnitude of \vec{a}.
The magnitude of $7 * \vec{a}$ is a factor of 7 less than the magnitude of \vec{a}.
The magnitude of $7 * \vec{a}$ is the same as the magnitude of \vec{a}.The magnitude of $7 * \vec{a}$ is zero.Not enough information is given.
7. $0 / 4$ points
mi3 1.5.x.084.nva [1541721]
A planet is located at $<-9 e 10,4 e 10,-3 e 10>m$. A star is located at $<2 \mathrm{e} 10,-4 \mathrm{e} 10,1 \mathrm{e} 10>\mathrm{m}$.
(a) What is $\overrightarrow{\mathrm{r}}_{\text {sp }}$, the vector from the star to the planet?

$$
\overrightarrow{\mathrm{r}}_{\mathrm{sp}}=\square<-1.10 e+11,8.00 e+10,-4.00 e+10>{ }^{\mathrm{m}}
$$

(b) What is the magnitude of $\overrightarrow{\mathrm{r}}_{\mathrm{sp}}$?
$\left|\overrightarrow{\mathrm{r}}_{\mathrm{sp}}\right|=\square 1.42 \mathrm{e}+11 \mathrm{~m}$
(c) What is $\hat{\mathrm{r}}$, the unit vector (vector with magnitude 1) in the direction of $\overrightarrow{\mathrm{r}}_{\text {sp }}$?
$\hat{\mathrm{r}}=$ \square

$$
<-0.776,0.564,-0.282>
$$

8. $0 / 12$ points

Any vector can be written as a unit vector multiplied by the magnitude of the vector (a positive scalar). Write each of the following vectors as the magnitude of the vector times the appropriate unit vector:

$$
\begin{aligned}
& <0,0,6>=(\square \square \square) *<\square \square 0, \square \square 0, \square \square 1> \\
& <0,-681,0>=(\square \square \square 681) *<\square \square 0, \square \square-1, \square \square 0> \\
& <0.00293,0,-0.00293>=(\square \square 0.00415) *<\square \square 0.707, \square \square \square 0, \square \square \square-0.707> \\
& <3 e 6,-7 e 6,7 e 6>=(\square \square \square 1.03 \mathrm{e}+07) *<\square \square 0.29, \square \square \square-0.677, \square \square \square 0.677>
\end{aligned}
$$

9. $0 / 0.5$ points MI3 1.5.X.063. [1249696]

If $\vec{p}=\langle-9,5,7\rangle$, what is $5+\vec{p}$?
<-4, 10, 12 >
This is a meaningless expression, because a scalar cannot be added to a vector.
$\langle-45,25,35\rangle$
<-1.80, 1.00, 1.40 >
<-14, 0, 2\rangle
10. $0 / 5$ points

MI3 1.5.X.021. [1249701]
$\vec{A}=\langle 700,900,-700\rangle$ and $\vec{B}=\langle-500,-300,150\rangle$.
Calculate the following:
(a) $\vec{A}+\vec{B}$

(b) $|\vec{A}+\vec{B}|$

$$
\square 838
$$

(c) $|\vec{A}|$
$\square 1340$
(d) $|\vec{B}|$
$\square \square 602$
(e) $|\vec{A}|+|\vec{B}|$

$$
\square 1940
$$

11. $0 / 1$ points

Which of the following statements about the three vectors shown are correct?

$\vec{s}+\vec{t}=\vec{r}$
$\square \vec{s}=\vec{t}-\vec{r}$
$\square \vec{r}+\vec{s}=\vec{t}$
$\square \vec{r}+\vec{t}=\vec{s}$
$\square \vec{r}=\vec{t}-\vec{s}$
12. $0 / 1.5$ points

MI3 1.5.X.026. [1249703]
A unit vector lies in the $x y$ plane, at an angle of 155 degrees from the $+x$ axis, with a positive y component. What is the unit vector? (It helps to draw a diagram.)

