Ch3 HW1 (1360586)

Cur	rent Score: 0/25 Due: Fri Sep 17 2010 09:00 AM EDT			
Qı	uestion 1 2 3 4 5 6 7 8 9 Total			
F	Points 0/25			
Description Gravitational force; fundamental interactions Instructions Reading: Sec. 3.1-3.4 Question 7 leads you through the several steps necessary to calculate the gravitational force as a vector. Question 8 asks you to do a similar calculation on your own; carry out the same steps as in question 7.				
1.	0/1 points	MI3 3.1.X.026. [1250541] _		
	Match the process with the fundamental interaction responsible for	this process.		
	The Earth pulls on the Moon	(
		The gravitational interaction		
	Protons and neutrons attract each other in a nucleus	- + The strong interaction		
	A neutron outside a nucleus decays into a proton, electron, and antineutrino	-		
	Protons in a nucleus repel each other	The electromagnetic interaction		
2.	0/2 points	MI3 3.2.X.031. [1250513] _		
	The mass of the Sun is 2×10^{30} kg, and the mass of Mercury is 3.33 m.	×10 ²³ kg. The distance from the Sun to Mercury is 4.8×10^{10}		
	 (a) Calculate the magnitude of the gravitational force exerting 1.92e+22 N (b) Calculate the magnitude of the gravitational force exerting 1.92e+22 N 	red by the Sun on Mercury. red by Mercury on the Sun.		

	0/5 points mi3 3.3.x.039.nva [1250467]		
	(a) Calculate the magnitude of the gravitational force exerted by Mercury on a 60 kg human standing on the surface of		
	Mercury. (The mass of Mercury is 3.3×10^{23} kg and its radius is 2.4×10^6 m.)		
	(b) Calculate the magnitude of the gravitational force exerted by the human on Mercury. 230 N		
	(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 3.5 meters away.		
	 (d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!) Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another. 		
	 Freat the humans as though they were points or uniform-density spheres. Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses. 		
	0/2 points MI3 3.2.X.027. [1259431]		
	At a particular instant the magnitude of the gravitational force exerted by a planet on one of its moons is 3×10^{24} N.		
	(a) If the mass of the moon were six times as large, what would the magnitude of the force be? $ \vec{F} = 1.80e+25$ N		
	(b) If instead the distance between the moon and the planet were six times as large (no change in mass), what would the magnitude of the force be? $ \vec{F} = \boxed{8.33e+22}$ N		
	0/1 points MI3 3.2.X.029. [1259435]		
	A planet exerts a gravitational force of magnitude $5e22$ N on a star. If the planet were 5 times closer to the star (that is, if the distance between the star and the planet were $1/5$ what is is now), what would be the magnitude of the force on the star due to the planet?		

6. 0/4 points

MI3 3.2.X.030. [1259420]

{A moon orbits a planet in the *xy* plane, as shown in the figure. You want to calculate the force on the moon by the planet at each location labeled by a letter (*A*,*B*,*C*,*D*). At each of these locations, what are (a) the unit vector \hat{r} , and (b) the unit vector \hat{F} in the direction of the force?

7.	0/4 points MI3 3.2.X.008. [1250522] _
	A planet of mass 9×10^{24} kg is at location $< 5 \times 10^{11}$, -2×10^{11} , $0 > m$. A star of mass 6×10^{30} kg is at location $< -4 \times 10^{11}$, 5×10^{11} , $0 > m$. It will be useful to draw a diagram of the situation, including the relevant vectors.
	What is the relative position vector pointing from the planet to the star? $\vec{r} = \langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
8.	0/4 points MI3 3.2.X.034. [1259436]
	A planet of mass 6×10^{24} kg is at location $\langle -4 \times 10^{11}, 7 \times 10^{11}, 0 \rangle$ m. A star of mass 8×10^{30} kg is at location $\langle 4 \times 10^{11}, -4 \times 10^{11}, 0 \rangle$ m. What is the force exerted on the planet by the star? (It will probably be helpful to draw a diagram, including the relevant vectors.) $\vec{F}_{\text{on planet}} = \langle 1.02e+21 \rangle$, $2.44e+21 \rangle$, $0 \rangle$ N
9.	0/2 points mi3 3.3.x.037.alt01.nva [1259438]
	If the mass of a planet is 2.00×10^{24} kg, and its radius is 4.80×10^6 m, what is the magnitude of the gravitational field, g , on the planet's surface? $g = \boxed{95.82}$ N/kg An object of mass 7 kg rests on the surface of this planet. What is the magnitude of the gravitational force on the object? $\left \vec{F}_{graw}\right = \boxed{940.7}$ N

Assignment Details