Ch3 HW1 (1360586)

Current Score:	0/25		Due:			Fri Sep 172010 09:00 AM ED					
Question	1			3	4	5	6	7	8		Total
Points	$0 / 10 / 20 / 50 / 20 / 10 / 40 / 40 / 40 / 2$										0/25

Description

Gravitational force; fundamental interactions

Instructions
Reading: Sec. 3.1-3.4

Question 7 leads you through the several steps necessary to calculate the gravitational force as a vector. Question 8 asks you to do a similar calculation on your own; carry out the same steps as in question 7 .
1.

0/1 points
Match the process with the fundamental interaction responsible for this process.
The Earth pulls on the Moon

-
The gravitational interaction

Protons and neutrons attract each other in a nucleus

A neutron outside a nucleus decays into a proton, electron, and antineutrino

Protons in a nucleus repel each other

2.

0/2 points
The mass of the Sun is $2 \times 10^{30} \mathrm{~kg}$, and the mass of Mercury is $3.3 \times 10^{23} \mathrm{~kg}$. The distance from the Sun to Mercury is 4.8×10^{10} m.
(a) Calculate the magnitude of the gravitational force exerted by the Sun on Mercury.
$\square \mathrm{N}$
(b) Calculate the magnitude of the gravitational force exerted by Mercury on the Sun.
\square
3. $0 / 5$ points
mi3 3.3.x.039.nva [1250467]
(a) Calculate the magnitude of the gravitational force exerted by Mercury on a 60 kg human standing on the surface of Mercury. (The mass of Mercury is $3.3 \times 10^{23} \mathrm{~kg}$ and its radius is $2.4 \times 10^{6} \mathrm{~m}$.)
$\square 230 \mathrm{~N}$
(b) Calculate the magnitude of the gravitational force exerted by the human on Mercury.
\square
(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 3.5 meters away.
$\square 1.97 \mathrm{e}-08 \mathrm{~N}$
(d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!)
\square Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another.ρ Treat the humans as though they were points or uniform-density spheres.Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses.Treat Mercury as though it were a uniform-density sphere.
4. $0 / 2$ points

MI3 3.2.X.027. [1259431]
At a particular instant the magnitude of the gravitational force exerted by a planet on one of its moons is $3 \times 10^{24} \mathrm{~N}$.
(a) If the mass of the moon were six times as large, what would the magnitude of the force be?
$|F|=\square \mathrm{N}$
(b) If instead the distance between the moon and the planet were six times as large (no change in mass), what would the magnitude of the force be?
$|\vec{F}|=\square \mathrm{N}$
5. $0 / 1$ points

MI3 3.2.X.029. [1259435]
A planet exerts a gravitational force of magnitude 5 e 22 N on a star. If the planet were 5 times closer to the star (that is, if the distance between the star and the planet were $1 / 5$ what is is now), what would be the magnitude of the force on the star due to the planet?
$|\vec{F}|=\square 1.25 \mathrm{e}+24 \mathrm{~N}$
6. $0 / 4$ points

MI3 3.2.X.030. [1259420]
\{A moon orbits a planet in the $x y$ plane, as shown in the figure. You want to calculate the force on the moon by the planet at each location labeled by a letter (A, B, C, D). At each of these locations, what are (a) the unit vector \hat{r}, and (b) the unit vector \hat{F} in the direction of the force?

At A :
$\hat{r}=\langle\square, \square 0,0\rangle$
$\hat{F}=\langle\square \square-1, \square, 0\rangle$
At B :
$\hat{r}=\langle\square \square 1, \square\rangle$
$\hat{F}=\langle\square \square, \square-1,0\rangle$
At C:
$\hat{r}=\langle\square \square-1, \square \square, 0\rangle$
$\hat{F}=\langle\square, \square\rangle$
$\hat{F}=\langle\square, \square 0,0\rangle$
At D :
$\hat{r}=\langle\square 0, \square \square-1,0\rangle$
$\hat{F}=\langle\square \square 0, \square, 0\rangle$
7. $0 / 4$ points

MI3 3.2.X.008. [1250522]
A planet of mass $9 \times 10^{24} \mathrm{~kg}$ is at location $<5 \times 10^{11},-2 \times 10^{11}, 0>\mathrm{m}$. A star of mass $6 \times 10^{30} \mathrm{~kg}$ is at location
$<-4 \times 10^{11}, 5 \times 10^{11}, 0>\mathrm{m}$. It will be useful to draw a diagram of the situation, including the relevant vectors.
What is the relative position vector pointing from the planet to the star?
$\vec{r}=<\square-9.00 \mathrm{e}+11, \square 7.00 \mathrm{e}+11, \square>\mathrm{m}$
What is the distance between the planet and the star?
$|\vec{r}|=\square 1.14 \mathrm{e}+12 \mathrm{~m}$
What is the unit vector \hat{r} in the direction of \vec{r} ?
$\hat{r}=<\square-0.789, \square 0.614, \square>$
What is the magnitude of the force exerted on the planet by the star?
$\left|\vec{F}_{\text {on planet }}\right|=\square 2.78 \mathrm{e}+21 \mathrm{~N}$
What is the magnitude of the force exerted on the star by the planet?
$\left|\vec{F}_{\text {on star }}\right|=\square 2.78 \mathrm{e}+21 \mathrm{~N}$
What is the force (vector) exerted on the planet by the star?
$\vec{F}_{\text {on planet }}=<\square-2.20 \mathrm{e}+21, \square 1.71 \mathrm{e}+21, \square \mathrm{~N}$
What is the force (vector) exerted on the star by the planet?
$\vec{F}_{\text {on star }}=<\square \square 2.20 \mathrm{e}+21, \square-1.71 \mathrm{e}+21, \square \mathrm{~N}$
8. $0 / 4$ points

MI3 3.2.X.034. [1259436]
A planet of mass $6 \times 10^{24} \mathrm{~kg}$ is at location $<-4 \times 10^{11}, 7 \times 10^{11}, 0>\mathrm{m}$. A star of mass $8 \times 10^{30} \mathrm{~kg}$ is at location $<4 \times$ $10^{11},-4 \times 10^{11}, 0>\mathrm{m}$. What is the force exerted on the planet by the star? (It will probably be helpful to draw a diagram, including the relevant vectors.)

```
F}\mathrm{ on planet }=\langle\square1.02\textrm{e}+21,\square-1.41\textrm{e}+21,0\rangle
```

9. $0 / 2$ points
mi3 3.3.x.037.alt01.nva [1259438]
If the mass of a planet is $2.00 \times 10^{24} \mathrm{~kg}$, and its radius is $4.80 \times 10^{6} \mathrm{~m}$, what is the magnitude of the gravitational field, g, on the planet's surface?
$g=\square \mathrm{N} / \mathrm{kg}$
An object of mass 7 kg rests on the surface of this planet. What is the magnitude of the gravitational force on the object?

Assignment Details

