184_notes:level_up_sol

This is an old revision of the document!


Circuit A: R_{eq}=R_1+R_2+R_3= 9 Ω V_3>V_2>V_1 I_1=I_2=I_3

Circuit B: C_{eq}=(\frac{1}{C_1}+ \frac{1}{C_2}+ \frac{1}{C_3})^{-1}= 2.3 mF Q_{1}=Q_{2}=Q_{3} V_1>V_2>V_3

Circuit C: C_{eq}=C_1+C_2+C_3 = 21 mF V_{1}=V_{2}=V_{3} Q_3>Q_2>Q_1

Circuit D: R_{eq}=(\frac{1}{R_1}+ \frac{1}{R_2}+ \frac{1}{R_3})^{-1}= 0.92 Ω V_{1}=V_{2}=V_{3} I_1>I_2>I_3

Circuit A: R_{eq}= 350 Ω

Circuit B: R_{eq}= 400 Ω

Circuit C: C_{eq}=235 μF

Circuit D: C_{eq}=176.25 μF

Circuit A:

Results:

Power Ranking: P_1=P_2>P_1=P_3=P_4

Circuit B:

Results:

Power Ranking: P_1>P_5>P_2>P_3>P_4

Circuit C

Results:

Power Ranking: P_5>P_3>P_1=P_2>P_4

Circuit D

Results:

Power Ranking: P_1>P_4>P_5>P_3>P_2

Circuit A

Results:

Circuit B

Results:

Circuit C

Results:

Circuit D

Results:

Circuit A

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

  • R_1 and R_2 in series, R_1+R_2=200 Ω

Node Rule:

  • I_1+I_2=I_3

Loop Rule:

  • Loop A: V_1-I_1R_{12}-I_3R_3=0
  • Loop B: I_3R_3-I_2R_4-V_2=0
  • Loop C: V_1-I_1R_{12}-I_2R_4-V_2=0

Solution:

I_1=0.024A, I_2=0.018A, I_3=0.042A

*note can use wolfram/online/calc to evaluate I from loop AND node rule equations

Circuit B

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

  • R_1 || R_2, R_{12}=50 Ω

Node Rule:

  • I_1=I_2+I_3

Loop Rule:

  • Loop A: V_1-I_1R_{12}-I_3R_3=0
  • Loop B: V_2 -I_2R_4 +I_3R_3=0
  • Loop C: V_1-I_1R_{12-V_2}-I_2R_4=0

Solution:

I_1=0.12 A, I_2=0.09A, I_3=0.03A

Circuit C

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

  • R_2 and R_3 in series, R_2+R_3=200 Ω
  • R_4 || R_5, R_{12}=50 Ω

Node Rule:

  • I_1=I_2+I_3

Loop Rule:

  • Loop A: V_1-I_1R_1+V_2-I_1R_{45}=0
  • Loop B: -V_2-I_3R_{23}=0
  • Loop C: V_1-I_1R_1-I_3R_{23}-I_1R_{45}=0

Solution:

I_1=0.06A, I_2=0.09A, I_3=-0.03A

Circuit D

Given:

V_1= 9V, V_2= 6V, R=100 Ω

Simplify Circuit:

  • R_2 and R_3 in series, R_2+R_3=200 Ω
  • R_1||R_{23}, R_{12}=66.667 Ω

Node Rule:

  • I_1=I_2+I_3

Loop Rule:

  • Loop A: V_1-I_1R_{123}- 0
  • Loop B: I_2R_{123}-V_2-I_3R_4=0
  • Loop C: V_1-V_2-I_3R_4=0

Solution:

I_1=0.165A, I_2=0.135A, I_3=0.03A

(a) Initially there is current in all branches of the circuit (uncharged capacitors act like wires - current can pass through).

(b) I_i = 0.00436 A

©

  • 184_notes/level_up_sol.1603747482.txt.gz
  • Last modified: 2020/10/26 21:24
  • by dmcpadden